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Fey’s Method of Transport (MoT) is a multidimensional flux-vector-splitting
scheme for systems of conservation laws. Similarly to its one-dimensional fore-
runner, the Steger–Warming scheme, and several other upwind finite-difference
schemes, theMoT suffers from an inconsistency at sonic points when used with
piecewise-constant reconstructions. This inconsistency is due to a cell-centered evo-
lution scheme, which we callMoT-CCE, that is used to propagate the waves resulting
from the flux-vector-splitting step. Here we derive new first-order- and second-order-
consistent characteristic schemes based on interface-centered evolution, which we
call MoT-ICE. We prove consistency at all points, including the sonic points. More-
over, we simplify Fey’s wave decomposition by distinguishing clearly between a
linearization and a decomposition step. Numerical experiments confirm the stability
and accuracy of the new schemes. Owing to the simplicity of the two new ingredi-
ents of theMoT-ICE, its second-order version is several times faster than that of the
MoT-CCE. c© 2000 Academic Press
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1. INTRODUCTION

Since the work of Godunov [13], Van Leer [42], Harten–Lax [14], and Roe [35], the
numerical solution of systems of hyperbolic conservation laws has been dominated by
Riemann-solver-based schemes. This approach has been called flux-difference splitting,
since the difference of two fluxes is decomposed into one-dimensional waves. These one-
dimensional schemes are usually extended to several spatial dimensions either by using
dimensional-splitting on Cartesian grids or by using the finite-volume approach on un-
structured grids. For both approaches, convergence and error estimates have been estab-
lished for multidimensionalscalar conservation laws; see for example the results and
references in [2, 4, 17, 28, 29, 41, 46]. Naturally, there are no comparable results for
multidimensionalsystems, since no existence and uniqueness of the p.d.e.’s is known in this
case.

The first systematic criticism of using one-dimensional Riemann solvers for multidimen-
sional gasdynamics goes back to Roe himself [36]: the Riemann solver is applied in the
grid rather than the flow direction, which may lead to a misinterpretation of the local wave
structure of the solution. LeVeque and Walder [22] present difficulties of Godunov’s scheme
for strong two-dimensional shock waves arising in astrophysical flows and propose the use
of rotated Riemann solvers. In [27, 37] Roe and Noelle study oscillations generated by
dimensional-splitting schemes for a prototype linear system. A description of a number of
failings of exact and approximate Riemann solvers for the two-dimensional Euler equations
of gasdynamics, in particular the “odd–even decoupling” and the “carbuncle” phenomenon,
may be found in Quirk’s paper [34]. Recently, several authors have analyzed instabilities of
one-dimensional flux-difference-splitting schemes for Quirk’s examples (cf. [32, 47] and
the references therein).

Since the mid 1985s, Roe, Deconinck, Van Leer, and many others have developed the so-
called fluctuation-splitting schemes for the equations of gasdynamics (see [5, 44, 45]). Other
multidimensional approaches include Colella’s Corner-Transport-Upwind (CTU) scheme
[3], LeVeque’s CLAWPACK [18, 21], and the Weighted-Average-Flux (WAF) scheme of
Billet and Toro [1].

In this paper we focus on Fey’s Method of Transport (MoT) [7–11]. TheMoTbelongs to
the family of flux-vector-splitting schemes first introduced by Sanders and Prendergast [39]
and Steger and Warming [40]. Instead of decomposing the divergence of the flux vector, as
in the fluctuation-splitting schemes of Roeet al., one splits the conservative variables and
the flux vector themselves. In the original version of Fey’sMoT [7], the acoustic waves were
integrated over the entire Mach cone in two dimensions, and hence the scheme could be
interpreted as an Euler-Characteristic-Galerkin method (see [31] and [24] for recent related
progress). Subsequently Fey, Jeltsch, and collaborators simplified theMoTand expanded it
in various directions (see [8–11, 25, 26]).

The starting point of this work are the papers [9, 11]. In these papers, theMoT takes
the following form: Step 1. A multidimensional wave model leads to a reformulation of the
conservation law as a finite set of coupled nonlinear advection equations. Step 2. At the
beginning of each timestep, the system is linearized and decomposed into a set of linear
scalar advection equations with variable coefficients. Step 3. The solution of each linear
advection equation at the end of the timestep is computed using a characteristic scheme.
Step 4. The solution is projected back onto the conservative variables using the wave model
of Step 1.
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Our own contribution to Fey’s method may be summarized as follows: Given a multidi-
mensional wave model (Step 1), we simplify Step 2 by distinguishing clearly between the
linearization and the decomposition step. This makes it possible to write down a general
second-order-correction term for the decomposition error in a single line. Then we discuss
the first-order version of Fey’s characteristic scheme (Step 3) and show an inconsistency of
the numerical scheme on the level of the linear advection equation. Subsequently, we derive
new and particularly simple characteristic schemes based on piecewise-constant (respec-
tively piecewise-linear) reconstructions and prove that they are uniformely first- (respec-
tively second-order-) consistent. To apply these characteristic schemes to nonlinear systems
of conservation laws, one needs to predict the solution at the interfaces between the cells of
the computational domain at the half-timestep. At this stage we use flux-difference-splitting
techniques to stabilize discontinuous solutions.

Owing to the simpler second-order-correction term for the decomposition error and the
simplicity of the new characteristic scheme our second-order scheme is several times
faster than Fey’s scheme and seems to be competitive with state-of-the-art second-order
algorithms.

Even though we only present numerical experiments in two spatial dimensions, it is
possible and in fact straightforward to generalize our new scheme to the three-dimensional
case (see the Remark following Definition 3.2, in particular Eq. (87)).

Fey’s transport algorithm might be calledMoT-CCE, since his advection scheme uses cell-
centered evolution. We call our new scheme, which is based on interface centered evolution,
MoT-ICE. When combined with piecewise-constant (respectively linear) reconstructions,
we call the schemesP0 (respectivelyP1).

The paper is organized as follows: In Section 2.1, we recall Fey’s multidimensional wave
models. In Section 2.2, we derive our second-order-accurate linearization and decompo-
sition. In Section 3.1, we present a class of characteristic schemes for linear advection
equations with variable coefficients. In Section 3.2, we show the inconsistency of theMoT-
ICE-P0. In Section 3.3, we present theMoT-ICEand prove uniform first-order (respectively
second-order) consistency of theMoT-ICE-P0(respectivelyMoT-ICE-P1). In Section 4, we
generalize the method to systems of conservation laws. We give full details of first- and
second-order-consistent algorithms in two spatial dimensions and prove their consistency.
In Sections 5.1–5.5, we present numerical experiments. The comparison of cpu times is
given in Section 5.6. In Section 6, we summarize our results.

Some of the results of this paper have been announced, but not proved, in [30].

2. DECOMPOSITION OF MULTIDIMENSIONAL SYSTEMS OF CONSERVATION

LAWS INTO ADVECTION EQUATIONS

In this section, we recall Fey’s advection form for multidimensional systems of conser-
vation laws and give a general second-order-accurate linearization and decomposition of
systems which can be written in advection form.

2.1. A General Framework for Multidimensional Flux-Vector Splitting

Consider a multidimensional system ofm conservation laws ind spatial dimensions,

∂tU+∇ · F(U) = 0, (1)
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whenU: Rd × R+ → U ⊂ Rm is the state vector andF: U → Rm×d is the flux. We will
always denote column vectors in state spaceRm by bold capital letters and row vectors in
physical spaceRd by underlined small letters. Note that the divergence acts on the rows of
F = (F1, . . . ,Fd).

EXAMPLE 2.1. We start our discussion with a very brief review of the Steger–Warming
flux-vector splitting for the Euler equations of gasdynamics in one dimension. All we need
to know at the moment about the Euler equations is thatF(U) is homogeneous of degree 1
in U, and soF(sU) = sF(U) for all reals. Differentiating with respect tos and evaluating
ats= 1 gives

F(U) = F′(sU)U|s=1 = F′(U)U, (2)

whereF′ is the Jacobian matrix ofF. Since the system is hyperbolic,F′(U) possessesm
real eigenvaluesal (U) and a complete set of eigenvectors{R1(U), . . . ,Rm(U)}, and so we
may projectU onto these eigenvectors,

U =
m∑

l=1

sl (U)Rl (U) =:
m∑

l=1

Sl (U). (3)

Heresl (U) are uniquely defined real coefficients. From (2) and (3) we obtain

F(U) = F ′(U)
m∑

l=1

sl (U)Rl (U) =
m∑

l=1

al (U)sl (U)Rl (U) =
m∑

l=1

al (U)Sl (U). (4)

Thus we can split both the state vector and the flux vector intomparts,Sl (U)andal (U)Sl (U),
which we will call components in the following. Using this decomposition we rewrite the
Euler equations as a sum of advection equations,

m∑
l=1

(∂tSl (U)+ ∂x(al (U)Sl (U))) = 0. (5)

For a more detailed exposition as well as the definition of the Euler equations we refer the
reader to [9, 40].

In [7, 8], Fey generalized the one-dimensional Steger–Warming splitting to the multi-
dimensional Euler equations by integrating a set of suitably modified one-dimensional
decompositions over all possible directions of propagation (e.g., the Mach cone for the
acoustic waves). Ostkamp [31] showed that the resulting algorithm is closely related to an
Euler Characteristic Galerkin method (compare also [24]). Since the integration over the
Mach cone was computationally rather expensive, Fey, Jeltsch, and collaborators [9–11]
went on and replaced the integration of the accoustic waves over the Mach cone by a sum
over finitely many waves. In this way, they arrived at the following abstract framework for
multidimensional flux-vector splitting:

DEFINITION 2.1. A wave-modelfor (1) is a set ofL ≥ 1 continuously differentiable
mappingsSl ∈ C1(U,Rm) (called waves) andal ∈ C1(U,Rd) (called advection velocities),
l = 1, . . . , L, such that the following two consistency conditions are satisfied for allU ∈ U :
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(i) consistency with the state vector,

L∑
l=1

Sl (U) = U, (6)

(ii) consistency with the flux vector,

L∑
l=1

Sl (U)al (U) = F(U). (7)

Given a wave model, the conservation law (1) may be rewritten in the followingadvection
form:

L∑
l=1

(∂tSl (U)+∇ · (Sl (U)al (U))) = 0. (8)

Thus we decompose the state vectorU into L wavesSl (U), which are then transported
with the advection velocitiesal (U). Motivated by the Steger–Warming splitting for the one-
dimensional Euler equations, one may think of the wavesSl (U) and the advection velocities
al (U) as generalized eigenvectors and eigenvalues of the Jacobian matricesF′(U).

Before we discuss how to use the advection form numerically, let us give some examples
of multidimensional wave models.

EXAMPLE 2.2. Consider a hyperbolic system (1) with homogeneous flux

F(U) = A(U)U = (A1(U)U, . . . ,Ad(U)U), (9)

where

A j (U) = F′j (U), j = 1 . . .d, (10)

are the Jacobians of the components ofF(U ). We assume that the system is hyperbolic,
so that each matrixA j (U) is diagonalizable with real eigenvaluesajl (U), l = 1, . . . ,m.
Furthermore, we even suppose that theA j (U) are simultaneously diagonalizable (i.e., they
commute). Then they have acommoncomplete set of eigenvectorsRl (U), l = 1, . . . ,m.

Now we can split the state and the flux vector analogously to the Steger–Warming split-
ting: we project the state vectorU onto the eigenvectors,

U =
m∑

l=1

sl (U)Rl (U) =:
m∑

l=1

Sl (U), (11)

and immediately obtain the consistency relation (6). For the corresponding advection ve-
locities we choose thel th eigenvalues of the matricesA j (U),

al (U) = (a1l (U), . . . ,adl(U)), (12)
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and easily verify the consistency with the flux (7),

m∑
l=1

Sl (U)al (U) =
m∑

l=1

(sl (U)Rl (U))al (U)

=
m∑

l=1

sl (U)(a1l (U)Rl (U), . . . ,adl(U)Rl (U))

=
m∑

l=1

sl (U)(A1(U)Rl (U), . . . ,Ad(U)Rl (U))

= A(U)
(

m∑
l=1

sl (U)Rl (U)

)
= A(U)U
= F(U). (13)

Note that ifF(U) is linear, we even have

∂t Sl (U)+∇ · (Sl (U)al ) = Rl [∂t sl (U)+∇ · (sl (U)al )] = 0 (14)

for each summand of (8) separately, which is the standard decomposition of a diagonalizable
linear hyperbolic system into advection equations.

EXAMPLE 2.3. As an example of a nonhomogeneous system with noncommuting
Jacobians, let us consider the equations of two-dimensional isentropic gasdynamics,

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2+ κργ )x + (ρuv)y = 0 (15)

(ρv)t + (ρuv)x + (ρv2+ κργ )y = 0

with κ > 0 andγ ≥ 1, whereρ is the mass density,u = (u, v) is the velocity vector, and
the sound velocityc is given by

c := (γ κργ−1)1/2. (16)

Now we may write

U = ρ
(

1

uT

)
, F(U) = Uu+ ρc2

γ

(
0

I

)
, (17)

where 0= (0, 0) and I is the 2× 2 unit matrix. Note thatρc2/γ is the pressure. Following
Fey’s work [9] on the nonisentropic Euler equations, Morel [26] gives the following splitting:

LEMMA 2.1. For L ∈ N let nl ∈ R2, l = 1, . . . , L , be vectors satisfying

L∑
l=1

nl = 0 (18)

1

L

L∑
l=1

nT
l nl = I. (19)
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Here nT
l nl = nl ⊗ nl denotes the tensor product. Then the waves

Sl (U) := 1

L
U+ ρc

Lγ

(
0

nT
l

)
(20)

and advection velocities

al (U) := u+ cnl (21)

satisfy the consistency relations(6) and(7).

The proof follows immediately from (17), (18), and (19).
As a particular case, one may chooseL = 4 and

nl ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)} (22)

(this is the choice in [9, 26], and we will use this choice in the numerical experiments
in Section 5). In this case the componentsa1l (U) anda2l (U) of the advection velocities
coincide with the eigenvaluesu± c andv ± c, and we may interpret the waves as acoustic
waves.

Note that if all thenl have the same length, then (19) implies that|nl | =
√

2, and|nl | =√
d in d spatial dimensions. However, if thenl were unit vectors, then theSl (U) andal (U)

would coincide with the eigenvectors and physical speeds of propagation in the direction
nl as naturally happens in the one-dimensional situation. In this case, however, condition
(19) and hence (7) would be violated. One can also rule out this inconsistent choice using
the following heuristic stability argument: Let us compare the choice ofnl in (22) with the
alternative choice

nl ∈ {
√

0.5(1, 1),
√

0.5(1,−1),
√

0.5(−1, 1),
√

0.5(−1,−1)} (23)

(so |nl | = 1 in the latter case). Following the stability argument of Courant–Friedrichs–
Lewy, we see that the domain of influence of the wave model should certainly contain that
of the conservation law. We will see that this is true if thenl are chosen by (22) but violated
if they are chosen by (23) (see Fig. 1).

FIG. 1. The squareQ0, its domain of influence according to the conservation law (rounded square in solid
lines, centered att(u, v)), and the domain of influence of the wave model, which is the union of the four squares
Q1, . . . , Q4 (broken lines). Left:|nl | =

√
2. Right:|nl | = 1 (note that in this case,Q1, . . . , Q4, all of which are

translations ofQ0, overlap).
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So suppose that data are given in some axiparallel squareQ0 with corners(−r,−r ), (r, r ).
The domain of influence of the linearized isentropic Euler equations is the set of all points
which are contained in the Mach cone emanating fromQ0, i.e., the union of all disks of
radiustc and with centers inQ0+ t (u, v). This is the square with rounded corners centered
at t (u, v), shown by a solid line in both figures. Let us denote this byM . Suppose now that
for the wave model, we have constant wavesSl and advection velocitiesal and transport
each wave in the directional for some timet , such thattc ≤ r . Then the domain of influence
of the squareQ0 (according to the wave model) will be the union of the four axiparallel
squaresQl = Q0+ tal , l = 1, . . . ,4. Let us denote this union bȳQ = ⋃4

l=1 Ql . In the
first case(|nl | =

√
2; left figure),Q̄ coincides with the smallest axi parallel square which

containsM , while in the second case(|nl | = 1; right figure)Q̄ is strictly smaller thanM
and hence the wave model may be unstable.

We would also like to recall from [9] that one may modify the wave models of Lemma 2.1
using instead the waves

Sl (U) := 1

L
U+ ν ρc

Lγ

(
0

nT
l

)
(24)

and advection velocities

al (U) := u+ c

ν
nl (25)

for any nonzeroν ∈ R. Note that this wave model allows arbitrary advection velocities.
Consistency is verified immediately for allν, but the above stability consideration should
be used to determine physically reasonable choices of the velocities.

It is well known that the equations of multidimensional gasdynamics cannot be diag-
onalized simultaneously. Therefore, we cannot expect the summands of (8) to be zero
individually. To see this, we set

∂tSl (U)+∇ · (Sl (U)al (U)) = −S′l (U)∇ · F(U)+∇ · (Sl (U)al (U))

=: Tl (U,∇U), (26)

where′ denotes differentiation with respect toU and we have used the conservation law (1)
to replace time by space derivatives. From (8), we see that

L∑
l=1

Tl (U,∇U) = 0 (27)

if U solves the conservation law. As a side remark, we note that this holds for any smooth
functionU,

L∑
l=1

Tl (U,∇U) =
L∑

l=1

(−Sl (U)′∇ · F(U)+∇ · (Sl (U)al (U)))

= U′∇ · F(U)−∇ · F(U) = 0,

sinceU′ is the identity matrix inRm×m.
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Now we use (17), (20), (21), (25), and the notationnl = (αl , βl ) and obtain after a tedious
computation

Tl = cρx

L


γ+1

2 αl

γ+1
2 uαl +

(
α2

l − 1
)
c

γ+1
2 vαl + αlβl c

+ cρux

L


0

γ+1
2γ αl

γ−1
2γ βl

+ cρvx

L

 0
0
αl



+ cρy

L


γ+1

2 βl

γ+1
2 uβl + αlβl c

γ+1
2 vβl +

(
β2

l − 1
)
c

+ cρuy

L

 0
βl

0

+ cρvy

L


0

γ−1
2γ αl

γ+1
2γ βl

. (28)

One can see immediately that this is in general nonzero. We will use theseTl in our numerical
experiments for the shallow-water equations in Section 5.

Examples of wave models for other conservation laws, including the wave equation,
the Euler equations, and the equations of ideal magnetohydrodynamics, may be found in
[11]. Common to all of them is a finite set of acoustic waves which approximate the Mach
cone (typically four waves in two spatial dimensions). For the Euler equations one adds
an entropy wave, and for the MHD equations, one adds the two Alfv´en and possibly some
slow magneto-acoustic waves. We refer the reader to [9, 11] for a more detailed discussion.

For the equations of gasdynamics, wave models may be derived systematically from a
kinetic formulation by replacing the Maxwellian distribution function by a sum of Dirac
masses (see [48]).

We remark that the wave models presented here are fundamentally different from those
introduced in the context of fluctuation-splitting schemes by Roe, Deconinck, and others
(see [5, 36] and references therein). In the context of fluctuation-splitting schemes, the
divergence of the flux vector,∇ · F(U), is split into waves, while here the state vectorU and
flux vectorF(U) themselves (and not their derivatives) are decomposed. This is the crucial
difference between flux-difference- and flux-vector-splitting schemes.

From now on, we assume that a system of conservation laws and a wave model consistent
with that system in the sense of Definition 2.1 have already been chosen.

2.2. Decomposition into Advection Equations

Let us now see how the advection form (8) can be used when solving the initial value
problem (1) with dataU given at timetn = nk, wherek = 1t is the timestep. Our aim is to
develop algorithms which aresecond-order accuratein time and space for smooth solutions
and are nonoscillatory at discontinuities. For the rest of this section, we assume that the
solutionU is smooth. Hence our accuracy requirement means that after a single timestep, at
time tn+1 = tn + k, the difference between the exact and the approximate solution should
be ofO(k2+1).

First we consider a linear, diagonalizable hyperbolic system (see Example 2.2 above). All
one needs to do in this case is to solve theL = m scalar equations (14), which can be done
exactly. For general systems, this approach encounters two difficulties: first, in general the
advection velocitiesal (U) depend on the solution itself; so they are not known in advance.
Second, as we have proved for the equations of isentropic gasdynamics, we cannot expect
that each summandTl (U,∇U) occuring in (8) is equal to zero individually. Recall that
Tl (U,∇U) was defined in (25).
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In [9], Fey freezes the advection velocities at the original timesteptn and then solves each
component of (8) separately (with frozen velocities). Thus he has to solveL ≥ m linear
advection equations, now with spatially varying coefficients. At the end of the timestep,
the approximate solution is obtained as the sum over theL waves. This procedure leads
to first-order in time linearization and decomposition errors, which are then removed by
a suitable modification of the initial data to obtain a second-order in time linearization
and decomposition. Zimmermann [48] points out that for the equations of gasdynamics
this procedure is analogous to certain kinetic schemes [6, 33], where the collisionless
Boltzmann equation is solved during one timestep, and then the solution is projected onto
the corresponding equilibrium states by integrating (summing) the velocity distribution
function. For kinetic schemes, the technique to modify the initial data to obtain second-
order accuracy in time has been proposed by Deshpande [6].

We now study the linearization and decomposition errors separately and propose a slightly
modified linearization and decomposition. Our next lemma shows that freezing the velocity
field at the half-timesteptn+1/2 = tn + k/2 gives a second-order-accurate linearization. We
denote the frozen advection velocities byãl and the solution of the linearized system byV.

LEMMA 2.2 (Linearization). LetU be a smooth solution of(1), k = 1t > 0. Let

V: Rd × [tn, tn + k] → Rm

be the solution of the initial value problem

∂tV +∇ ·
m∑

l=1

(Sl (V)ãl ) = 0 (29)

V(tn) = U(tn), (30)

where the auxiliary velocity fields̃al : Rd → Rd, l = 1, . . . , L , satisfy

ãl (x) = al

(
U
(

x, tn + k

2

))
+O(k2). (31)

Then

V(tn + k)− U(tn + k) = O(k3). (32)

Note that the approximate transport velocitiesãl are nowprescribedcoefficients which
depend on space but not on time. In practice, they will have to be evaluated by a predictor
step at the half-timesteptn+1/2; see Section 4. System (29) is stillnonlinear in V. It is,
however,linear in the componentsSl (V), since

∂tV −
L∑

l=1

∂tSl (V).

This will become clear once we have decomposed (29) into its components; see (33) and
(38) below.
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Proof. The proof follows by expanding the solutionsV of (29), (30) andU of (8) into
Taylor series with respect to time. Att = tn we compute

Ut = −∇ · F(U) = −∇ ·
∑

Sl (U)al (U)

Ut t = −∇ ·
∑

(S′l (U)Utal (U)+ Sl (U)al (U)t )

Vt = −∇ ·
∑

Sl (V)ãl

Vt t = −∇ ·
∑

S′l (V)Vt ãl = −∇ ·
∑

(S′l (V)Vtal (U))+O(k).

Therefore, using (31) and̃al (x) = al (U(x, tn))+ k
2∂tal (U(x, tn))+O(k2) we obtain

Vt − Ut = −∇ ·
∑

Sl (U)(ã− al (U)) = −∇ ·
∑

Sl (U)
k

2
al (U)t +O(k2)

Vt t − Ut t = −∇ ·
∑

(S′l (U)(Vt − Ut )al (U)− Sl (U)al (U)t )+O(k)

= ∇ ·
∑

Sl (U)al (U)t +O(k).

It follows that

V(tn + k)− U(tn + k) = (V − U)+ k(Vt + Ut )+ 1

2
k2(Vt t − Ut t )+O(k3)

= −1

2
k2∇ ·

∑
Sl (U)al (U)t +

1

2
k2∇ ·

∑
Sl (U)al (U)t +O(k3)

= O(k3). ¥

As a corollary to the proof, we note that if we had frozen the velocity field at the beginning
of the timestep(t = tn), then the linearization would have been only first-order accurate
in time. Our linearization corresponds to integrating∂tU = −∇ ·

∑
Sl (U)al (U) from time

tn to tn+1 using the midpoint rule in time for the advection velocitiesal (U) and exact
integration for the wavesSl (U).

Next we consider the decomposition error. First, we simply decompose the linearized
advection form (29) by setting each summand to zero separately, denoting the solution of
the resulting system byW and its components byWl ,

W :=
L∑

l=1

Wl : Rd × [tn, tn + k] → Rm.

Now we suppose that eachWl solves the linear initial value problem

∂tWl +∇ · (Wl ãl ) = 0 (33)

Wl (tn) = Sl (U(tn)) = Sl (V(tn)). (34)

Then at timet = tn

Wt − Vt = 0

Wt t − Vt t = −∇ ·
∑

((Wl )t − S′l (V)Vt )ãl

= ∇ ·
∑(

∇ · (Wl ãl )− S′l (V)∇ ·
(∑

Sk(V)ãk

))
ãl
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= ∇ ·
∑

(∇ · (Sl (U)al (U))− S′l (U)∇ · F(U))ãl +O(k)

= ∇ ·
∑

(∇ · (Sl (U)al (U))+ S′l (U)Ut )ãl +O(k)

= ∇ ·
∑

(Sl (U)t +∇ · (S)l (U)al (U)))ãl +O(k)

= ∇ ·
∑

Tl (U,∇U)ãl +O(k),

where we have used the definition (25) ofTl (U,∇U). Therefore

W(tn + k)− V(tn + k) = k2

2
∇ ·

L∑
l=1

Tl (U,∇U)ãl +O(k3). (35)

We now modify the initial data ofW to obtain a second-order-accurate linearization and
decomposition. The most straightforward modification, replacingW(tn) by

U(tn)+ k2

2
∇ ·

L∑
l=1

Tl (U,∇U)ãl ,

would require computing second numerical derivatives of the conservative variables. Even
worse, it would violate the conservation principle. The same criticism applies if we replace
the initial data for each componentWl (tn) by

Sl (U(tn))+ k2

2
∇ · (Tl (U,∇U)ãl ).

Instead, we replaceWl (tn) by

Sl (U(tn))+ k

2
Tl (U(tn),∇U(tn)). (36)

Then we do not need to compute second derivatives, and conservation is guaranteed since
by (27),

∑
Tl (U(tn),∇U(tn)) = 0, and so

L∑
l=1

(
Sl (U(tn))+ k

2
Tl (U(tn),∇U(tn))

)
= U(tn). (37)

In the following theorem, we prove that this modification of the initial data indeed gives
second-order accuracy. The crucial point is that it leads to a modified first derivative of
the approximate solution. We denote the solution of the modified problem byZ and its
components byZl .

THEOREM2.1 (Second-Order-Accurate Decomposition).Let

Z :=
L∑

l=1

Zl : Rd × [tn, tn + k] → Rm

be the solution of the initial value problem

∂tZl +∇ · (Zl ãl ) = 0 (38)

Zl (tn) = Sl (U(tn))+ k

2
Tl (U(tn),∇U(tn)). (39)
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Then

Z(tn + k)− U(tn + k) = O(k3). (40)

Proof. As before, we expandZ(t) in a Taylor series. At timet = tn, we obtain

Zt = −∇ ·
∑

Zl ãl

Zt t = −∇ ·
∑

(Zl )t ãl ,

and therefore

Z − V = −
∑(

Sl (U)+ k

2
Tl (U,∇U)

)
− U = 0

Zt − Vt = −∇ ·
∑(

Sl (U)+ k

2
Tl (U,∇U)− Sl (U)

)
ãl

= −k

2
∇ ·
∑

Tl (U,∇U)ãl

Zt t − Vt t = −∇ ·
∑

((Zl )t − S′l (V)Vt )ãl

= ∇ ·
∑(

∇ · (Zl ãl )− S′l (V)∇ ·
∑

Sk(V)ãk

)
ãl

= ∇ ·
∑

(∇ · (Sl (U)al (U))− S′l (U)∇ · F(U))ãl +O(k)

= ∇ ·
∑

Tl (U,∇U)ãl +O(k).

This implies that

(Z − V)(tn + k) = O(k3),

and (40) now follows from (32). ¥

Let us mention once more that for the Euler equations and the shallow-water equations,
Morel, Fey, and Maurer have also derived a second-order-accurate decomposition into linear
advection equations. However, since they freeze the advection velocities at the beginning
of the timestep, their linearization is only first-order accurate in time. As a consequence,
they have to add correction terms for a mixed linearization and decomposition error, which
results in a solution that is computationally more expensive than ours. Note that, recently,
Zimmermann [48] has derived a different decomposition for the Euler equations which is
related to second-order kinetic schemes and evaluates the velocities at the half-timestep as
well.

3. SOLVING THE ADVECTION EQUATIONS BY CHARACTERISTIC SCHEMES

The linearization and decomposition given in the previous section leads us, at the begin-
ning of each timestep, to a set of scalar transport equations of the form

∂tϕ +∇ · (ϕa) = 0. (41)
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In this section, we discuss several ways to discretize (41). In Section 3.2, we show that
a notorious inconsistency at sonic points, which is well known for several finite-volume
schemes, appears also for a standard first-order discretization of (41). In Section 3.3, we
modify this discretization and prove first- and second-order consistency of our new method.

For the rest of this section, we assume that the velocity fielda:Rd × R+ → Rd is a given
smoothfunction of x and t . In Section 4 we will indicate how to treatpiecewise smooth
velocity fields, which arise from the discretization of the full system of conservation laws (1).

The scalar functionϕ:Rd × R+ → R is the unknown, and initial data are prescribed at
t = tn := nk,

ϕ(x, tn) = ϕD(x). (42)

Equations (41), (42) may be solved by introducing the characteristicsξ(τ ; x, t) by

ξ :R+ × Rd × R+ →Rd

ξ(t; x, t) = x (43)

∂τ ξ(τ ; x, t) = a(ξ(τ ; x, t), τ ).

Since the flux vectorϕa is always parallel to the characteristics, we have the following:

LEMMA 3.1. For all K ⊂ Rd, t, τ ∈ R+,

d

dτ

∫
ξ(τ ;K ,t)

ϕ(x, τ )dx = 0. (44)

3.1. Characteristic Schemes

We would like to use Lemma 3.1 to construct numerical methods for solving (41). For
simplicity, we restrict the analysis from now on to two spatial dimensions and use the
notationx = (x, y) ∈ R2 for the space variable,a = (a, b) ∈ R2 for the velocity field, and
ξ = (ξ, η) for the characteristics. In the Remark following Definition 3.2, we will generalise
our new scheme to an arbitrary number of space dimensions and indicate the treatment of
curvilinear grids.

For i , j ∈ Z let (xi , yj ) := (ih, jh) be the points and let

Ki j := [xi−1/2, xi+1/2
]× [yj−1/2, yj+1/2

]
:= [xi − h/2, xi + h/2]× [yj − h/2, yj + h/2] (45)

be the cells of a uniform Cartesian grid with mesh spaceh = 1x = 1y. Recall thatk = 1t
is the timestep. Lemma 3.1 gives

∫
Ki j

ϕ(x, tn+1) dx =
∑
i ′, j ′

 ∫
Ki ′ j ′ ∩ξ(tn;Ki j ,tn+1)

ϕ(x, tn) dx

 . (46)

Note thatKi ′ j ′ ∩ ξ(tn; Ki j , tn+1) is that part ofKi ′ j ′ that will be mapped toKi j by the
characteristic flow from timetn to timetn+1 (see Fig. 2).
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FIG. 2. Backward characteristic transport of cellKi j for the casea, b > 0. The region bounded by the curved
lines isξ(tn; Ki j , tn+1), and the dotted lines are backward characteristic curves issuing from the corners of cell
Ki j . The dashed lines are the grid lines.

DEFINITION 3.1. Letϕ̄n
i j be an approximation of the cell average of the solution of the

linear advection equation (41) at timetn,

ϕ̄n
i j ≈

1

|Ki j |
∫

Ki j

ϕ(x, tn) dx (47)

and let thewaveϕ̄i j
i ′ j ′ approximate the flow from cellKi ′ j ′ to cell Ki j from time tn to time

tn+1,

ϕ̄
i j
i ′ j ′ ≈

1

|Ki j |
∫

Ki ′ j ′ ∩ξ (tn;Ki j ,tn+1)

ϕ(x, tn) dx. (48)

A characteristic schemefor (41) is then given by

ϕ̄0
i j := 1

|Ki j |
∫

Ki j

ϕD(x) dx (49)

ϕ̄n+1
i j :=

∑
i ′, j ′

ϕ̄
i j
i ′ j ′ . (50)

We always assume theconservativityproperty∑
i ′, j ′

ϕ̄
i ′ j ′
i j = ϕ̄n

i j , (51)

where the waves ¯ϕi ′ j ′
i j are defined as in (48).

Remark. (i) Definition 3.1 is essentially due to Fey. Note that the waves ¯ϕ
i j
i ′ j ′ andϕ̄i ′ j ′

i j

may be interpreted in two ways: Eq. (50) states that the cell average ofϕ over cellKi j at
the new timetn+1 is a sum of waves ¯ϕi j

i ′ j ′ which flow from all neighborsKi ′ j ′ (including
(i ′, j ′) = (i, j )) into the cellKi j . The dual interpretation is given by (51): the cell-average

of ϕ over cellKi j at the old timetn may be decomposed into waves ¯ϕ
i ′ j ′
i j which flow out of

the cell to the neighborsKi ′ j ′ .
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(ii) Using (51) the update (50) may be rewritten in the conservative form

ϕ̄n+1
i j = ϕ̄n

i j +
∑
i ′, j ′

(
ϕ̄

i j
i ′ j ′ − ϕ̄i ′ j ′

i j

)
. (52)

One may think of the quantity ¯ϕ
i j
i ′ j ′ − ϕ̄i ′ j ′

i j as an approximation of the integral of the flux
between cellsKi ′ j ′ andKi j over the time interval [tn, tn+1].

(iii) In the numerical algorithms presented below, the approximation of (48) will come
in two steps. The first step will be a spatial reconstruction ofϕ(·, tn) by piecewise constant
or piecewise linear functionsϕR. We will label the corresponding schemesP0 and P1
respectively. The second step will be the approximation of the characteristic flowKi ′ j ′ ∩
ξ(tn; Ki j , tn+1). This will be done either by cell-centered evolution or by interface-centered
evolution, and we will use the acronymsCCEandICE to distinguish these two approaches.

For the moment, let us consider schemes using piecewise constant reconstructions and
focus on the approximation of the characteristic flow.

NOTATION 3.1. In the following, we will use notation of the form

an
i+(1/2) j := a

(
xi+1/2, yj , tn

)
(53)

for a, b, andϕ. Whenever no confusion is possible, we will drop the superscript n.

3.2. Cell-Centered Evolution: TheMoT-CCE

In a series of papers [7–11], Fey and collaborators have used a cell-centered approximation
of the characteristic flow. When combined with piecewise constant reconstructions, Fey’s
scheme is defined as follows:

In each cellKi j , consider the local characteristic flow defined by

ξn
i j
(t; x, t) := x

∂τ ξ
n
i j
(τ ; x, t) := a(xi , yj , tn) = an

i j ,
(54)

so that each local approximationξn
i j

of the flow is defined using the constant velocity field
an

i j = a(xi , yj , tn). Then set

K i j
i ′ j ′ := Ki ′ j ′ ∩ ξn

i ′ j ′(tn; Ki j , tn+1) (55)

and

ϕ̄
i j
i ′ j ′ := 1

|Ki j |
∫

K i j
i ′ j ′
ϕR(x) dx =

∣∣K i j
i ′ j ′
∣∣

|Ki j | ϕ̄i ′ j ′ . (56)

In one spatial dimension this leads to the algorithm

ϕ̄n+1
i := ϕ̄i

i−1+ ϕ̄i
i + ϕ̄i

i+1

= λ(ai−1)+ ϕ̄i−1+ (1− λ|ai |)ϕ̄i − λ(ai+1)−ϕ̄i+1, (57)
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whereλ := k/h and the subscripts± denote the positive and negative parts of a quantity.
Here we have assumed the CFL (Courant–Friedrichs–Lewy) condition

λmax
i,n

∣∣an
i

∣∣ ≤ 1, (58)

and so the update in cellKi is only affected by the values of the old solutions in the
neighboring cells.

Fey calls his schemeMoT (Method of Transport), and therefore we will use the acronym
MoT-CCE-P0for his scheme with piecewise constant reconstructions.

Let us discuss the consistency of theMoT-CCE-P0with the differential equation (41). Ifa
is constant, then (56) coincides with the first-order upwind scheme. For variable coefficients
the situation is more complex. Let us consider two examples.

EXAMPLE 3.1. First let us consider the case

a(x, t) = −x

corresponding to a compressive wave(∇ · a < 0). For constant initial data,

ϕD(x) ≡ 1,

the exact solution remains constant in space but grows exponentially in time,

ϕ(x, t) ≡ et .

The approximate solution produced by theMoT-CCE-P0is

ϕ̄n
i =

{
(1+ k)n, i 6= 0

2(1+ k)n − 1, i = 0.

As k tends to zero withλ fixed, this solution converges to

ϕapprox(x, t) :=
{

et , x 6= 0

2et − 1, x = 0.

Thus (56) is inconsistent with the differential equation (41) at the “sonic” pointx =
0, where the transport velocitya changes sign. The cell-centered evolution leads to an
inconsistent approximation of∇ · a, which takes the value 2 instead of 1. This situation is
illustrated in Fig. 3.

EXAMPLE 3.2. As a complementary example, let us consider the case of a rarefaction
wave,∇ · a > 0:

a(x, t) = x, ϕD(x) ≡ 1.

In this case the exact solution is

ϕ(x, t) ≡ e−t

and the approximate solution is

ϕ̄n
i =

{
(1− k)n, i 6= 0

1, i = 0.
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FIG. 3. Approximate characteristic flow for theMoT-CCE-P0in one spatial dimension. Compression field
(top) and rarefaction field (bottom). Each cellKi is transported forwards in time using the constant velocityan

i .
Note the resulting gaps for the rarefaction and the overlaps for the compression.

As k tends to zero withλ fixed, this solution converges to

ϕapprox(x, t) :=
{

e−t , x 6= 0

1, x = 0

so we have an analogous inconsistency.

A similar difficulty was already described by Steger and Warming in 1981 [40]: the
numerical flux produced by their splitting is not continuously differentiable at sonic points
for the equations of gasdynamics (i.e., points where the magnitude of the fluid velocity
|u| equals the sound velocityc, so one eigenvalue ofu± c vanishes). This results in so-
called glitches at the sonic points. Subsequently, Van Leer [43] developed a splitting with
continuously differentiable fluxes (compare also the discussion in Chapter 20.2.3 of Hirsh’s
textbook [15]).

In her dissertation, Morel [26] also observed glitches at sonic points for two-dimensional
shallow-water computations carried out with theMoT-CCE-P0, and she generalized the Van
Leer flux-vector-splitting to two dimensions to remove these numerical artifacts. However,
this slows down the algorithm considerably, and Morel herself remarks that her method does
not seem to be generalizable to second-order accuracy. Compare our numerical experiments
in Section 5.5 below.

Let us also remark that in Examples 3.1 and 3.2 above, theMoT-CCE-P0diverges in
the L∞-norm but converges inL1. Moreover, this inconsistency does not occur when one
approximates the velocity fielda by piecewise linear functions; i.e., Fey’sMoT-CCE-P1
may very well be second-order consistent, even at sonic points.

For similar difficulties at sonic points in the context of upwind finite-difference schemes
we refer the reader to [38].
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3.3. Interface-Centered Evolution: TheMoT-ICE

For the rest of this section, we will derive an alternative to the cell-centered evolution
discussed above and prove its consistency. Since the new scheme will approximate the
characteristic flow by an extrapolation of the transport velocities which is centered at the
interfacesbetween the cells, we will call itMoT-ICEfor interface-centered evolution.

As we have seen at the beginning of this section, it is crucial to approximate the charac-
teristic flowξ(·; x, tn) along the velocity fielda from time tn to time tn+1, or equivalently,
the backwards characteristic flowξ(·; x, tn+1) from time tn+1 to time tn. Let Lx,n

j+1/2 be the
curve in the (x, y)-plane that will be mapped to the horizontal grid lineR× {yj+1/2} by the
forward flow. Using the notationξ = (ξ, η) for the characteristics we may write

Lx,n
j+1/2 := {x | η(tn+1; x, tn) = yj+1/2

} = ξ(tn;R× {yj+1/2
}
, tn+1

)
. (59)

Similarly, letL y,n
i+1/2 be the curve which will be mapped to the vertical grid line{xi+1/2} × R,

L y,n
i+1/2 := {x | ξ(tn+1; x, tn) = xi+1/2

} = ξ(tn;{xi+1/2
}× R, tn+1

)
. (60)

For small values ofk = 1t and smooth velocity fieldsa, the curveLx,n
j+1/2 is almost hori-

zontal, and the curveL y,n
i+1/2 is almost vertical. See the upper two plots of Fig. 4.

FIG. 4. Backward characteristic transport of the grid lines from timetn+1 to tn (a, b > 0). Upper row: original
grid attn+1 (dashed lines) and transformed horizontal and vertical lines attn (full lines). Lower row: approximation
of the transformed grid attn by horizontal and vertical line segments. The dots are the midpointsmx,n

i j+1/2,m
y,n
i+(1/2) j ,

(and an approximation of these).
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We rewrite the two curves as the union of small segments of approximate lengthh,

Lx,n
j+1/2 =

⋃
i∈Z

Lx,n
i, j+1/2 (61)

with

Lx,n
i j+1/2 := {x ∈ Lx,n

j+1/2

∣∣ x ∈ [xi−1/2, xi+1/2
]}

(62)

and

L y,n
i+1/2 =

⋃
j∈Z

L y,n
i+(1/2) j (63)

with

L y,n
i+(1/2) j := {x ∈ L y,n

i+1/2

∣∣ y ∈ [yj−1/2, yj+1/2
]}
. (64)

We will approximate the curved segmentLx,n
i j+1/2 by a horizontal line segment

L̂ x,n
i j+1/2 := [xi−1/2, xi+1/2

]× {ŷi j+1/2
}
. (65)

and approximate the segmentL y,n
i+(1/2) j by a vertical line segment

L̂ y,n
i+(1/2), j := {x̂i+(1/2) j

}× [yj−1/2, yj+1/2
]
. (66)

This is illustrated in the lower two plots of Fig. 4.
Let us summarize this: first we have traced the gridlines backwards along the characteristic

flow, leading to almost horizontal curvesLx,n
j+1/2 and almost vertical curvesL y,n

i+1/2. Then
we have approximated these curves by unions of horizontal line segments and unions of
vertical line segments respectively.

Note that so far, the definition of the line segments is incomplete, since we have not yet
defined the valueŝxi+(1/2) j and ŷi j+1/2.

Let

mx,n
i j+1/2 =

(
xi , y∗i j+1/2

) ∈ Lx,n
i j+1/2 (67)

my,n
i+(1/2) j =

(
x∗i+(1/2) j , yj

) ∈ L y,n
i+(1/2) j . (68)

be the midpoints of the segmentsLx,n
i j+1/2 and L y,n

i+(1/2) j respectively. Then the midpoints

(xi , ŷi j+1/2) of L̂ x,n
i j+1/2 and(x̂i+(1/2) j , yi ) of L̂ y,n

i+(1/2) j should satisfy

x̂i+(1/2) j = x∗i+(1/2) j +O(hp+1) (69)

ŷi j+1/2 = y∗i j+1/2+O(hp+1), (70)

respectively.
We will see later on that forp = 1 andp = 2, this is sufficient forpth-order accuracy

(see Theorems 3.1 and 3.2 below).
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Let us approximatex∗i+(1/2) j : From the definition of the characteristic flow (43), any point
x satisfies

ξ(tn+1; x, tn)− x =
tn+1∫
tn

∂τ ξ(τ ; x, tn) dτ =
tn+1∫
tn

a(ξ(τ ; x, tn), τ )dτ. (71)

We now choosex = my,n
i+(1/2) j and take thex-component of (71). From the definition (60)

of the segmentL y,n
i+(1/2) j we obtain

xi+1/2− x∗i+(1/2) j =
tn+1∫
tn

a
(
ξ
(
τ ;my,n

i+(1/2) j , tn
)
, τ
)

dτ. (72)

Now we will approximate the time integral by a quadrature rule,

1

k

tn+1∫
tn

a
(
ξ
(
τ ;my,n

i+(1/2) j , tn
)
, τ
)

dτ = ân
i+(1/2) j +O(kp). (73)

Soân
i+(1/2) j is an approximation of the mean value of thex-componenta of the velocity field

a along the characteristicξ issuing from the midpointmy,n
i+(1/2) j of the segmentL y,n

i+(1/2) j at
time tn and arriving at the line{xi+1/2} × R at timetn+1.

Using the explicit Euler timestep to approximate the integral we obtain

1

k

tn+1∫
tn

a
(
ξ
(
τ ;my,n

i+(1/2) j , tn
)
, τ
)

dτ = a
(
my,n

i+(1/2) j , tn
)+O(k) = an

i+(1/2) j +O(k), (74)

where we have used (72) and the fact that for uniformly bounded velocity fieldsa,

my,n
i+(1/2) j =

(
x∗i+(1/2) j , yj

) = (xi+1/2, yj
)+O(k). (75)

Next let us approximate (73) to second order. From (72) and (74) we have

x∗i+(1/2) j = xi+1/2− kan
i+(1/2) j +O(k2). (76)

Together with the mid point rule in time and a Taylor expansion ofa(ξ(tn+1/2; (x, yj ), tn)
aroundx = xi+1/2− kan

i+(1/2) j this gives

1

k

tn+1∫
tn

a
(
ξ
(
τ ;my,n

i+(1/2) j , tn
)
, τ
)

dτ

= a
(
ξ
(
tn+1/2;my,n

i+(1/2) j , tn
)
, tn+1/2

)+O(k2).

= a
(
ξ
(
tn+1/2;

(
xi+1/2− kan

i+(1/2) j , yj
)
, tn
)
, tn+1/2

)+O(k2). (77)
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Now we approximate the characteristic transportξ at timetn+1/2:

ξ
(
tn+1/2 j ;

(
xi+1/2− kan

i+(1/2) j , yj
)
, tn
)

= (xi+1/2− kan
i+(1/2) j , yj

)+ k

2

(
an

i+(1/2) j , b
n
i+(1/2) j

)+O(k2)

=
(

xi+1/2− k

2
an

i+(1/2) j , yj + k

2
bn

i+(1/2) j

)
+O(k2). (78)

We use (78) in (77) and Taylor expansions as above to obtain

1

k

tn+1∫
tn

a
(
ξ
(
τ ;my,n

i+(1/2) j , tn
)
, τ
)

dτ

= a

(
xi+1/2− k

2
an

i+(1/2) j , yj + k

2
bn

i+(1/2) j , tn+1/2

)
+O(k2)

=
[
a− k

2
aax + k

2
bay

]n+1/2

i+(1/2) j

+O(k2). (79)

Here we have applied Notation 3.1 to the term in square brackets. The valuey∗i j+1/2 which
defines the midpointmx,n

i j+1/2 = (xi , y∗i j+1/2) of the horizontal line segmentLx,n
i j+1/2 is ap-

proximated analogously. These calculations lead us to the folowing definition:

DEFINITION 3.2. The midpointŝmx,n
i j+1/2 = (xi , ŷi j+1/2) andm̂y,n

i+(1/2) j = (x̂i+(1/2) j , yj )

of the horizontal and vertical line segmentsL̂ x,n
i j+1/2 and L̂ y,n

i+(1/2) j respectively are given
by

x̂i+(1/2) j := xi+1/2− kân
i+(1/2) j (80)

ŷi j+1/2 := yj+1/2− kb̂n
i j+1/2. (81)

We define the auxiliary transport velocitiesân
i+(1/2) j andb̂n

i j+1/2 by

ân
i+(1/2) j := an

i+(1/2) j (82)

b̂n
i j+1/2 := bn

i j+1/2, (83)

for theMoT-ICE-P0and by

ân
i+(1/2) j :=

[
a− k

2
aax + k

2
bay

]n+1/2

i+(1/2) j

(84)

b̂n
i j+1/2 :=

[
b− k

2
abx − k

2
bby

]n+1/2

i j+1/2

(85)

for theMoT-ICE-P1.

Remark. The formulae given in Definition 3.2 can be carried over to any number of
space dimensions and grids of arbitrary orientation: LetL be a curve segment which is
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associated to a cell interfaceI ∈ Rd, and letx be the midpoint andnthe normal ofI . Then
we may approximate the midpointm of L by

1

k

tn+1∫
tn

a(ξ(τ ;m, tn), τ )dτ = a

(
x − k(a · n)n+ k

2
a

)(
x, tn+1/2

)+O(k2) (86)

and introduce the auxiliary transport velocityâ by

â :=
[
a− k(a · n)(n · ∇)a+ k

2
(a · ∇)a

](
x, tn+1/2

)
. (87)

The midpointm̂ of the approximate line segmentL̂ is then given by

m̂ := x − k(â · n)n· (88)

In particular, in the three-dimensional case theMoT-ICE-P1has the same simplicity as in
the two-dimensional case. Moreover, formulae (87) and (88) may be applied to curvilinear
Cartesian grids, as well.

To illustrate the idea of theMoT-ICEeven more clearly, we display the approximation
of the characteristic flow in Fig. 5. We show the same situation as we have done in Fig. 3
for the MoT-ICE-P0. For theMoT-CCE, cells are transportedforwards in time using an
approximation of the characteristic flow at thecell centers. For theMoT-ICE, interfaces
between the cells are trackedbackwardsin time using auxiliary transport velocities which
are defined at theseinterfaces.

From now on, we letλ = k/h and suppose that the CFL condition

λmax
i, j,n

{∣∣ân
i+1/2, j

∣∣, ∣∣b̂n
i, j+1/2

∣∣} ≤ 1 (89)

is satisfied.

FIG. 5. Approximate characteristic flow for theMoT-ICE in one spatial dimension. Compression field (top)
and rarefaction field (bottom) (same situation as in Fig. 3). Each cell interfaceIi+1/2 is tracked backwards in time
using the auxiliary transport velocitŷan

i+1/2.
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Let us look once more at Definition 3.1 of the characteristic schemes: to finish the
discretization of (41), it remains to define the waves ¯ϕ

i ′ j ′
i j in (50)–(51). We do this as

follows: write

ϕ̄
i ′ j ′
i j := 1

|Ki j |
∫

K i ′ j ′
i j

ϕR(x, y) dx dy, (90)

where

K i ′ j ′
i j := [xi ′

i j ,L , xi ′
i j ,R

]× [y j ′
i j ,L , y j ′

i j ,R

]
(91)

is that approximation of

Ki j ∩ ξ(tn; Ki ′ j ′ , tn+1)

which is constructed by replacing the curved line segmentsLx,n
i j±1/2 andL y,n

i±(1/2) j defined
in (61)–(64) by the straight line segmentsL̂ x,n

i j±1/2 and L̂ y,n
i±(1/2) j defined in (65) and (66).

Using (80) and (81) we obtain

xi ′
i j ,L =


xi−1/2 for i ′ = i − 1

xi−1/2− k
(
ân

i−(1/2) j

)
− for i ′ = i

xi+1/2− k
(
ân

i+(1/2) j

)
+ for i ′ = i + 1

(92)

xi ′
i j ,R =

{
xi ′+1

i j ,L for i ′ ∈ {i − 1, i }
xi+1/2 for i ′ = i + 1

(93)

y j ′
i j ,L =


yj−1/2 for j ′ = j − 1

yj−1/2− k
(
b̂n

i j−1/2

)
− for j ′ = j

yj+1/2− k
(
b̂n

i j+1/2

)
+ for j ′ = j + 1

(94)

y j ′
i j ,R =

{
y j ′+1

i j ,L for j ′ ∈ { j − 1, j }
yj+1/2 for j ′ = j + 1

(95)

(compare Fig. 6 for the casêa, b̂ > 0). Note that for piecewise-constant reconstructions
(90) simply becomes

ϕ̄
i ′ j ′
i j := 1

|Ki j |
(
xi ′

i j ,R− xi ′
i j ,L

)(
y j ′

i j ,R− y j ′
i j ,L

)
ϕ̄i j (96)

and for piecewise-linear reconstructionsϕi j
R(x, y) (see (128)),

ϕ̄
i ′ j ′
i j := 1

|Ki j |
(
xi ′

i j ,R− xi ′
i j ,L

)(
y j ′

i j ,R− y j ′
i j ,L

) · ϕi j
R

(
xi ′

i j ,L + xi ′
i j ,R

2
,

y j ′
i j ,L − y j ′

i j ,R

2

)
. (97)

Remark. Formula (97) should be compared to theMoT-CCE-P1in [9]: given a piece-
wise-linear reconstruction of the velocity fields, theMoT-CCE-P1extrapolates the char-
acteristic flow over each cell forwards in time. The cell is thus transformed into a general
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FIG. 6. Auxiliary transport velocities and approximate characteristic decomposition of a two-dimensional
cell Ki j via interface-centered evolution. This figure is the result of superimposing the lower two plots of Fig. 4
and cutting out cellKi j .

quadrilateral, which has to be projected back onto the grid. Then a piecewise-linear recon-
struction of the solution is integrated over each resulting subcell. The necessary quadratures
are far more complex than (97). This seems to be the main reason for the gain of efficiency
of theMoT-ICE-P1(see Section 5.6). We expect an even bigger gain in efficiency for the
three-dimensional case.

3.3.1. Consistency of the MoT-ICE-P0

In this section, we state and prove first-order consistency of theMoT-ICEfor piecewise-
constant spatial reconstructions ofϕ. For technical reasons, we will need the following
definition:

DEFINITION 3.3. A function f defined at the cell centers is calleddiscretely Lipschitz
continuousif for neighboring cellsKi j andKi ′ j ′ ,

fi j − fi ′ j ′ = O(h). (98)

Analogously, a functiong which is defined at the interfaces between the cells is called
discretely Lipschitz continuous if its values at neighboring interfaces differ by no more
thanO(h).

THEOREM3.1. Suppose thatλ = k/h is fixed and that the CFL condition(89) is satisfied.
Suppose that̃ai+(1/2) j andb̃i j+1/2 are given discretely Lipschitz continuous grid functions,

and let the auxiliary transport velocitieŝa andb̂ be given by

âi+(1/2) j = a
(
xi+1/2, yj , tn

)+ hãi+(1/2) j (99)

b̂i j+1/2 = b
(
xi , yj+1/2, tn

)+ hb̃i j+1/2. (100)

Let the MoT-ICE-P0 for(41) be defined by(47), (48), where the waves̄ϕi ′ j ′
i j are defined

by (96) together with(92)–(95).
Then for any given smooth velocity field a: R2× R+ → R2, the MoT-ICE-P0 is consistent

of order one with the differential equation(41).



308 SEBASTIAN NOELLE

Note that we have replaced the definition (82), (83) of the auxiliary transport veloc-
ities ân

i+(1/2) j and b̂n
i j+1/2 by the slightly more general version (99), (100). The higher

order termsãi+(1/2) j and b̃i j+1/2 allow for some flexibility in the numerical approxima-
tion of the auxiliary transport velocites. For example, one might think of approximat-
ing an

i+(1/2) j = a(xi+1/2, yj , tn) by 1
2(a

n
i j + an

i+1 j ) or by an+1/2
i+(1/2) j . If the velocity fielda is

continuously differentiable, then the resulting termsãi+(1/2) j will be discretely Lipschitz
continous.

As is evident from Examples 3.1 and 3.2, the difficulty of the proof lies in controlling
the truncation error at the sonic points where the transport velocitiesa andb change their
sign.

Proof of Theorem 3.1.Let ϕ be a smooth solution of (41) with initial dataϕD given at
time t = tn, and let

ϕ̄n
i j =

1

|Ki j |
∫
Ki j

ϕD(x) dx. (101)

Let ϕ̄n+1
i j be the approximate solution computed with theMoT-ICE-P0, i.e., (48), (96), and

(99), (100). We would like to show that

ϕ̄n+1
i j −

1

|Ki j |
∫
Ki j

ϕ(x, tn+1) dx = O(h2). (102)

From (41),

1

|Ki j |
∫
Ki j

ϕ(x, k) dx

= 1

|Ki j |
∫
Ki j

ϕD(x) dx− 1

|Ki j |

tn+1∫
tn

yj+1/2∫
yj−1/2

(
aϕ
(
xi+1/2, y, t

)− aϕ
(
xi−1/2, y, t

))
dy dt

− 1

|Ki j |

tn+1∫
tn

xi+1/2∫
xi−1/2

(
bϕ
(
x, yj+1/2, t

)− bϕ
(
x, yj−1/2, t

))
dx dt

= ϕ̄n
i j − λ

(
(aϕ)ni+(1/2) j − (aϕ)ni−(1/2) j

)− λ((bϕ)ni j+1/2− (bϕ)ni j−1/2

)+O(k2). (103)

We rewrite the characteristic formulation (52) of the scheme in conservative form:

ϕ̄n+1
i j = ϕ̄n

i j − λ
(

fi+(1/2) j − fi−(1/2) j
)− λ(gi j+1/2− gi j−1/2

)
. (104)

Here the numerical fluxfi+(1/2) j acrossIi+(1/2) j is given by

λ fi+(1/2) j := (ϕ̄i+1 j
i j − ϕ̄i j

i+1 j

)+ 1

2

(
ϕ̄

i+1 j
i j+1 − ϕ̄i j

i+1 j+1+ ϕ̄i+1 j+1
i j − ϕ̄i j+1

i+1 j

)
+ 1

2

(
ϕ̄

i+1 j−1
i j − ϕ̄i j−1

i+1 j + ϕ̄i+1 j
i j−1 − ϕ̄i j

i+1 j−1

)
, (105)
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FIG. 7. Contribution to the numerical fluxfi+(1/2) j across interfaceIi+(1/2) j for theMoT-ICE in two spatial
dimensions. As before, the underlying grid is represented by dashed lines.

and the numerical fluxgi j+1/2 acrossJi j+1/2 is given analogously by

λgi j+1/2 := (ϕ̄i j+1
i j − ϕ̄i j

i j+1

)+ 1

2

(
ϕ̄

i j+1
i−1 j − ϕ̄i j

i−1 j+1+ ϕ̄i−1 j+1
i j − ϕ̄i−1 j

i j+1

)
+ 1

2

(
ϕ̄

i+1 j+1
i j − ϕ̄i+1 j

i j+1 + ϕ̄i j+1
i+1 j − ϕ̄i j

i+1 j+1

)
(106)

(see Fig. 7).
To verify (102), it is sufficient to show that

fi+(1/2) j − fi−(1/2) j = (aϕ)ni+(1/2) j − (aϕ)ni−(1/2) j +O(h2) (107)

and

gi j+1/2− gi j−1/2 = (bϕ)ni j+1/2− (bϕ)ni j−1/2+O(h2) (108)

Let us first verify (107). From (104),

λ fi+(1/2) j =
(
ϕ̄

i+1 j+1
i j + ϕ̄i+1 j

i j + ϕ̄i+1 j−1
i j

)− (ϕ̄i j+1
i+1 j + ϕ̄i j

i+1 j + ϕ̄i j−1
i+1 j

)
+ 1

2

(
ϕ̄

i+1 j
i j+1 − ϕ̄i j

i+1 j+1− ϕ̄i+1 j+1
i j + ϕ̄i j+1

i+1 j

)
− 1

2

(
ϕ̄

i+1 j−1
i j − ϕ̄i j−1

i+1 j − ϕ̄i+1 j
i j−1 + ϕ̄i j

i+1 j−1

)
= λ

[(
âi+(1/2) j

)
+ϕ̄i j +

(
âi+(1/2) j

)
−ϕ̄i+1 j

]
− λ

2

2

[(
âi+(1/2) j+1

)
+
(
b̂i j+1/2

)
−ϕ̄i j+1+

(
âi+(1/2) j+1

)
−
(
b̂i+1, j+1/2

)
−ϕ̄i+1, j+1

+ (âi+(1/2) j
)
+
(
b̂i j+1/2

)
+ϕ̄i j +

(
âi+(1/2) j

)
−
(
b̂i+1, j+1/2

)
+ϕ̄i+1, j

]
+ λ

2

2

[(
âi+(1/2) j

)
+
(
b̂i j−1/2

)
−ϕ̄i j +

(
âi+(1/2) j

)
−
(
b̂i+1, j−1/2

)
−ϕ̄i+1, j

+ (âi+(1/2) j−1
)
+
(
b̂i j−1/2

)
+ϕ̄i j−1+

(
âi+(1/2) j−1

)
−
(
b̂i+1, j−1/2

)
+ϕ̄i+1, j−1

]
=: λ f C

i+(1/2) j −
λ2

2

(
f N
i+(1/2) j − f S

i+(1/2) j

)
. (109)

This decomposition is shown schematically in Fig. 8.
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FIG. 8. Decomposition of the numerical flux into central, northern, and southern parts.

The central part of the flux satisfies

f C
i+1/2, j =

[
â+

(
ϕ − h

2
ϕx

)
− â−

(
ϕ + h

2
ϕx

)]
i+(1/2) j

+O(h2)

=
(

âϕ − h

2
|â|ϕx

)
i+(1/2) j

+O(h2)

= (aϕ)i+(1/2) j + h

(
ãϕ − 1

2
|a|ϕx

)
i+(1/2) j

+O(h2). (110)

Let

α := signâ.

The contribution from the northern corner satisfies

f N
i+(1/2) j =

[
â+

(
b̂− h

2
bx − h

2
by

)
−

(
ϕ − h

2
ϕx

)
+ â−

(
b̂+ h

2
bx − h

2
by

)
−

(
ϕ + h

2
ϕx

)]
i+(1/2) j+1

+
[
â+

(
b̂− h

2
bx + h

2
by

)
+

(
ϕ − h

2
ϕx

)
+ â−

(
b̂+ h

2
bx + h

2
by

)
+

(
ϕ + h

2
ϕx

)]
i+(1/2) j

+O(h2)

=: f N
1 + f N

1 +O(h2). (111)

We claim that

f N
1 =

[
â

(
b̂− h

2
αbx − h

2
by

)
−

(
ϕ − h

2
αϕx

)]
i+(1/2) j+1

+O(h2) (112)
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and

f N
2 =

[
â

(
b̂− h

2
αbx + h

2
by

)
+
(
ϕ − h

2
αϕx

)]
i+(1/2) j

+O(h2). (113)

First we prove (112). Note that the mappingb 7→ b− is Lipschitz continuous, and so(
b̂− h

2
bx − h

2
by

)
−
= b̂− +O(h). (114)

Using this and the identities

â+ = â+ αâ

2
, â− = â− αâ

2
(115)

we obtain

f N
1 =

{
â

[
1+ α

2

(
b̂− h

2
bx − h

2
by

)
−
+ 1− α

2

(
b̂+ h

2
bx − h

2
by

)
−

]
ϕ

− h

2
âb̂−(αϕx)

}
i+(1/2) j+1

+O(h2)

=
[
â

(
b̂− h

2
αbx − h

2
by

)
−
ϕ − h

2
âb̂−(αϕx)

]
i+(1/2) j+1

+O(h2)

=
[
â

(
b̂− h

2
αbx − h

2
by

)
−

(
ϕ − h

2
αϕx

)]
i+(1/2) j+1

+O(h2), (116)

i.e., (112). We verify (113) analogously, and in the same way, we obtain

f S = f S
1 + f S

2 +O(h2) (117)

with

f S
1 =

[
â

(
b̂− h

2
αbx − h

2
by

)
−

(
ϕ − h

2
αϕx

)]
i+(1/2) j

+O(h2) (118)

and

f S
2 =

[
â

(
b̂− h

2
αbx + h

2
by

)
+

(
ϕ − h

2
αϕx

)]
i+(1/2) j−1

+O(h2). (119)

Subtractingf S from f N, we obtain

f N
i+(1/2) j − f S

i+(1/2) j = h
∂

∂y

[
â

(
b̂− h

2
αbx − h

2
by

)
−

(
ϕ− h

2
αϕx

)]
i+(1/2) j+1/2

+ h
∂

∂y

[
â

(
b̂− h

2
αbx + h

2
by

)
+

(
ϕ− h

2
αϕx

)]
i+(1/2) j−1/2

+O(h2)

= h
∂

∂y

[
(ab−ϕ)i+(1/2) j+1/2+ (ab+ ϕ)i+(1/2) j−1/2

]+O(h2)

= h
∂

∂y
(abϕ)i+(1/2) j +O(h2). (120)
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Combining (109), (110), and (120), we obtain

fi+(1/2) j = (aϕ + hr)ni+(1/2) j +O(h2). (121)

with

r n
i+(1/2) j :=

[
ãϕ − 1

2
|a|ϕx − λ

2
(abϕ)y

]n

i+(1/2) j

. (122)

To verify (107) it remains to check that

h
(
r n

i+(1/2) j − r n
i−(1/2) j

) = O(h2). (123)

This is true because we are assuming thatϕ,a, andb are smooth and that̃a is discretely
Lipschitz continuous, and sor is discretely Lipschitz continuous. Equality (108) is proved
analogously. ¥

To get further insight into the failure of consistency of theMoT-CCE, we carry out the
above analysis for theMoT-CCEin one dimension. An elementary calculation leads to

f CCE
i+1/2 = (aϕ + hrCCE)ni+1/2+O(h2) (124)

with

r CCE
i+1/2 :=

[
−1

2
(|a|ϕ)x

]
i+1/2

. (125)

The crucial difference between (122) and (125) is that the remainder now contains aderiva-
tive of |a|. At sonic points,a changes its sign, and so|a|x is discontinuous. Therefore, the
remainderr CCE

i+1/2 fails to be discretely Lipschitz continuous at sonic points, which leads to
the inconsistency shown in Examples 3.1 and 3.2.

3.3.2. Consistency of the MoT-ICE-P1

Here we state and prove second-order consistency in space and time of theMoT-ICEfor
piecewise-linear spatial reconstructions ofϕ.

THEOREM 3.2. Let a: R2× R+ → R2 be a given smooth velocity field and letϕ: R2×
R+ → R be a smooth solution of(41).

Let ã and b̃ be given discretely Lipschitz-continuous grid functions and define the
auxiliary transport velocitieŝa andb̂ by

ãi+(1/2) j =
[
a− k

2
aax + k

2
bay + k2ã

]n+1/2

i+(1/2) j

(126)

b̃i j+1/2 =
[
b+ k

2
abx − k

2
bby + k2b̃

]n+1/2

i j+1/2

. (127)

Let the MoT-ICE-P1 for(41) be defined by(47), (48), where the waves̄ϕi ′ j ′
i j are defined

by (97) together with(92)–(95) and the piecewise-linear reconstructionϕR of ϕ over Ki j
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is given by

ϕ
i j
R(x, y) := ϕ̄i j + (x − xi )(ϕx)i j + (y− yj )(ϕy)i j . (128)

Here we assume that the discrete derivatives(ϕx)i j and(ϕy)i j may be written in the form

(ϕx)i j = (ϕx)i j + h(ϕ̃x)i j (129)

(ϕy)i j = (ϕy)i j + h(ϕ̃y)i j , (130)

for some discretely Lipschitz-continuous grid functionsϕ̃x and ϕ̃y. Let λ = k/h be fixed
and suppose that the CFL condition(89) holds.

Then the MoT-ICE-P1 is consistent of order 2 with the differential equation(41).

As in the first-order case, the Lipschitz-continuous higher order terms in (126), (127)
permit some flexibility in the numerical implementation of the auxiliary transport
velocities, for example the approximation of the derivativesax,ay,at , etc. (see the proof
of Theorem 4.2 for systems of conservation laws.) Similarly, note that the piecewise-linear
numerical reconstructions of a smooth functionϕ based on cell averages ¯ϕi j do not evaluate
the derivatives of the function exactly. The auxiliary valuesϕ̃x andϕ̃y take these deviations
into account.

In our test calculations in Section 5 we approximate the derivatives(ϕx)i j and (ϕy)i j

by a central version of the WENO (Weighted Essentially Non-Oscillatory) reconstruction
[16, 23],

(ϕx)i j := 1

h
WENO(ϕ̄i j − ϕ̄i−1 j , ϕ̄i+1 j − ϕ̄i j ) (131)

(ϕy)i j := 1

h
WENO(ϕ̄i j − ϕ̄i j−1, ϕ̄i j+1− ϕ̄i j ) (132)

with

WENO(d1, d2) := (ω1d1+ ω2d2)/(ω1+ ω2) (133)

and

ωi := (ε + d2
i

)−2
. (134)

As in [16], we useε := 10−6. Using similar techniques as in [16], one can verify that the
central WENO reconstruction satisfies (129), (130) at all points, including extrema of the
solution.

The proof of Theorem 3.2 follows along the lines of that of Theorem 3.1 but requires a
much more careful analysis of truncation errors owing to the piecewise-linear reconstruction.
Let us stress once more that we do obtain second-order consistency at all points, including
those where the transport velocities change sign.

Proof of Theorem 3.2.Let ϕ be a smooth solution of (41). We want to show that

ϕ̄n+1
i j −

1

|Ki j |
∫
Ki j

ϕ(x, k) dx = O(h3). (135)
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From (41),

1

|Ki j |
∫
Ki j

ϕ(x, tn+1) dx = ϕ̄n
i j − λ

[
(aϕ)n+1/2

i+(1/2) j − (aϕ)n+1/2
i−(1/2) j

]
− λ[(bϕ)n+1/2

i j+1/2− (bϕ)n+1/2
i j−1/2

]+O(k3). (136)

Using a Taylor series with a remainderf̃ , we obtain

(aϕ)n+1/2
i+(1/2) j =

[
aϕ + k

2
(aϕ)t + k2 f̃

]n

i+(1/2) j

=
[(

a+ k

2
at

)(
1− k

2
(ax + by)

)
ϕ − k

2
(a2ϕx + abϕy)+ k2ψa

]n

i+(1/2) j

.

(137)

The last equality implicitly defines a discretely Lipschitz continuous functionψa. Combin-
ing this with (126), we obtain

(aϕ)n+1/2
i+(1/2) j =

[(
â− k

2
(ab)y − k2ã

)
ϕ − k

2
(a2ϕx + abϕy)+ k2ψa

]n

i+(1/2) j

=
[
âϕ − k

2
a2ϕx − k

2
(abϕ)y − k2ã+ k2ψa

]n

i+(1/2) j

=
[
â

(
ϕ − k

2
âϕx

)
− k

2
(âb̂ϕ)y + k2ψa

]n

i+(1/2) j

. (138)

Analogously,

(bϕ)n+1/2
i j+1/2 =

[
b̂

(
ϕ − k

2
b̂ϕy

)
− k

2
(âb̂ϕ)x + k2ψb

]n

i j+1/2

. (139)

Therefore,

(aϕ)n+1/2
i+(1/2) j − (aϕ)n+1/2

i−(1/2) j = h
∂

∂x

[
â

(
ϕ − k

2
âϕx

)
− k

2
(âb̂ϕ)y

]n

i j

+O(h3) (140)

and

(aϕ)n+1/2
i j+1/2− (bϕ)n+1/2

i j−1/2 = h
∂

∂y

[
b̂

(
ϕ − k

2
b̂ϕy

)
− k

2
(âb̂ϕ)x

]n

i j

+O(h3). (141)

As before, we rewrite the update in conservative form (104) and define the numerical
fluxes by (104), (105). Plugging (104) and (136)–(141) into (135), we see that it is sufficient
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to show

fi+(1/2) j − fi−(1/2) j = h
∂

∂y

[
â

(
ϕ − k

2
âϕx

)
− k

2
(âb̂ϕ)y

]n

i j

+O(h3) (142)

and

gi j+1/2− gi j−1/2 = h
∂

∂y

[
b̂

(
ϕ − k

2
b̂ϕy

)
− k

2
(âb̂ϕ)x

]n

i j

+O(h3). (143)

First we treat (142). Similarly as in (109), we rewrite the flux as

fi+(1/2) j = f C
i+(1/2) j −

λ

2

(
f N
i+(1/2) j − f S

i+(1/2) j

)
(144)

with

f C
i+(1/2) j := (âi+(1/2) j

)
+ϕ

i j
R

(
xi+1/2− k

2
â+, yj

)
+ (âi+(1/2) j

)
−ϕ

i+1, j
R

(
xi+1/2− k

2
â−, yj

)
, (145)

f N
i+(1/2) j := (âi+(1/2) j+1

)
+
(
b̂i j+1/2

)
−ϕ

i j+1
R

(
xi+1/2− k

2
â+, yj+1/2− k

2
b̂−

)
+ (âi+(1/2) j+1

)
−
(
b̂i+1, j+1/2

)
−ϕ

i+1, j+1
R

(
xi+1/2− k

2
â−, yj+1/2− k

2
b̂−

)
+ (âi+(1/2) j

)
+
(
b̂i j+1/2

)
+ϕ

i, j
R

(
xi+1/2− k

2
â+, yj+1/2− k

2
b̂+

)
+ (âi+(1/2) j

)
−
(
b̂i+1, j+1/2

)
+ϕ

i+1, j
R

(
xi+1/2− k

2
â−, yj+1/2− k

2
b̂+

)
, (146)

and

f S
i+(1/2) j := (âi+(1/2) j

)
+
(
b̂i j−1/2

)
−ϕ

i j
R

(
xi+1/2− k

2
â+, yj−1/2− k

2
b̂−

)
+ (âi+(1/2) j

)
−
(
b̂i+1, j−1/2

)
−ϕ

i+1, j
R

(
xi+1/2− k

2
â−, yj−1/2− k

2
b̂−

)
+ (âi+(1/2) j

)
+
(
b̂i j−1/2

)
+ϕ

i j−1
R

(
xi+1/2− k

2
â+, yj−1/2− k

2
b̂+

)
+ (âi+(1/2) j−1

)
−
(
b̂i+1, j−1/2

)
+ϕ

i+1, j−1
R

(
xi+1/2− k

2
â−, yj−1/2− k

2
b̂+

)
. (147)

Hereϕi, j
R is defined by (128), and we have simplified the notation as follows: wheneverâ±

(respectivelŷb±) appears twice on the same line, it is evaluated at the same point, and the
subscript is dropped at the second occurence.
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First we consider the central contributions to the flux,f C
i±(1/2) j . For i ′ ∈ {i, i + 1}, let

ψ
i ′ j
i+(1/2) j (x̃) := 1

h2

[
ϕ

i ′ j
R

(
xi+1/2− hx̃, yj

)− (ϕ − hx̃ϕx)i+(1/2) j
]
. (148)

Now

f C
i+(1/2) j =

{
â+

[(
ϕ − k

2
â+ϕx

)
+ h2ψ i j

(
λ

2
â+

)]
+ â−

[(
ϕ − k

2
â−ϕx

)
+ h2ψ i+1, j

(
λ

2
â−

)]}
i+(1/2) j

=
[
â

(
ϕ − k

2
âϕx

)]
i+(1/2) j

+ h2

[
â+ψ i j

(
λ

2
â+

)
+ â−ψ i+1, j

(
λ

2
â−

)]
i+(1/2) j

=: f C1
i+(1/2) j + h2 f C2

i+(1/2) j . (149)

From this, we obtain

f C1
i+(1/2) j − f C1

i−(1/2) j = h
∂

∂x

[
â

(
ϕ − k

2
âϕx

)]
i j

+O(h3). (150)

A straightforward computation using (128), (129), (130), the relation

ϕ̄i j = ϕi j + h2

24
(ϕxx)i j +O(h4), (151)

and the fact that products and sums of discretely Lipschitz-continuous functions are them-
selves discretely Lipschitz continuous shows thatf C2 is discretely Lipschitz continuous,
i.e.,

h2
(

f C2
i+(1/2) j − f C2

i−(1/2) j

) = O(h3). (152)

Combining (150) and (152) we obtain

f C
i+(1/2) j − f C

i−(1/2) j = h
∂

∂x

[
â

(
ϕ − k

2
âϕx

)]
i j

+O(h3). (153)

Next let us consider the contribution to the flux from the upper corner,f N
i+(1/2) j . Let Ki ′ j ′

be any cell which has(xi+1/2, yj+1/2) as a corner. Let

ζ
i ′, j ′
i+(1/2) j+1/2(x̃, ỹ) := 1

h2

[
ϕ

i ′ j ′
R

(
xi+1/2− hx̃, yj+1/2− hỹ

)
− (ϕ − hx̃ϕx − hỹϕy

)
i+(1/2) j+1/2

]
. (154)

We can now rewritef N as

f N
i+(1/2) j = (ϕ)i+(1/2) j+1/2 f N1

i+(1/2) j −
k

2
(ϕx)i+(1/2) j+1/2 f N2

i+(1/2) j

− k

2
(ϕy)i+(1/2) j+1/2 f N3

i+(1/2) j + h2 f N4
i+(1/2) j (155)
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with

f N1
i+(1/2) j := (âi+(1/2) j+1

)
+
(
b̂i j+1/2

)
− +

(
âi+(1/2) j+1

)
−
(
b̂i+1, j+1/2

)
−

+ (âi+(1/2) j
)
+
(
b̂i j+1/2

)
+ +

(
âi+(1/2) j

)
−
(
b̂i+1, j+1/2

)
+, (156)

f N2
i+(1/2) j := (âi+(1/2) j+1

)2
+
(
b̂i j+1/2

)
− +

(
âi+(1/2) j+1

)2
−
(
b̂i+1, j+1/2

)
−

+ (âi+(1/2) j
)2
+
(
b̂i j+1/2

)
+ +

(
âi+(1/2) j

)2
−
(
b̂i+1, j+1/2

)
+, (157)

f N3
i+(1/2) j := (âi+(1/2) j+1

)
+
(
b̂i j+1/2

)2
− +

(
âi+(1/2) j+1

)
−
(
b̂i+1, j+1/2

)2
−

+ (âi+(1/2) j
)
+
(
b̂i j+1/2

)2
+ +

(
âi+(1/2) j

)
−
(
b̂i+1, j+1/2

)
+, (158)

and

f N4
i+(1/2) j := (âi+(1/2) j+1

)
+
(
b̂i j+1/2

)
− ζ

i, j+1
i+1/2, j+1/2

(
λ

2
â+,

λ

2
b̂−

)
+ (âi+(1/2) j+1

)
−
(
b̂i+1, j+1/2

)
− ζ

i+1, j+1
i+(1/2) j+1/2

(
λ

2
â−,

λ

2
b̂−

)
+ (âi+(1/2) j

)
+
(
b̂i j+1/2

)
+ ζ

i, j
i+(1/2) j+1/2

(
λ

2
â+,

λ

2
b̂+

)
+ (âi+(1/2) j

)
−
(
b̂i+ j, j+1/2

)
+ ζ

i+1, j
i+(1/2) j+1/2

(
λ

2
â−,

λ

2
b̂+

)
. (159)

An analogous representation holds forf S
i+(1/2) j . Using the same arguments as in the

derivation of (152), one shows that

h2
(

f N4
i+(1/2) j − f S4

i+(1/2) j

) = O(h3). (160)

The coefficientsf N2 and f N3 consist of smooth terms ofO(1) andO(h) and of a remainder
which is a discretely Lipschitz-continuous function multiplied byh2. Therefore,

−k

2

[
(ϕx)i+(1/2) j+1/2 f N2

i+(1/2) j − (ϕx)i+(1/2) j−1/2 f S2
i+(1/2) j

− (ϕx)i−1/2, j+1/2 f N2
i−(1/2) j + (ϕx)i−(1/2) j−1/2 f S2

i−(1/2) j

] = O(h3) (161)

and

−k

2

[
(ϕy)i+(1/2) j+1/2 f N3

i+(1/2) j − (ϕy)i+(1/2) j−1/2 f S3
i+(1/2) j

− (ϕy)i−(1/2) j+1/2 f N3
i−(1/2) j + (ϕy)i−(1/2) j−1/2 f S3

i−(1/2) j

] = O(h3). (162)

Finally,

ϕi+(1/2) j+1/2 f N1
i+(1/2) j −ϕi+(1/2) j−1/2 f S1

i+(1/2) j −ϕi−(1/2) j+1/2 f N1
i−(1/2) j +ϕi−(1/2) j−1/2 f S1

i−(1/2) j

= h2

[
∂2

∂x∂y
((â+b̂− + â−b̂− + â+b̂+ + â−b̂+)ϕ)

]
i j

+O(h3).

= h2

[
∂2

∂x∂y
(abϕ)

]
i j

+O(h3). (163)
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Collecting (155)–(163) gives

−λ
2
( f N − f S)i+1/2, j + λ

2
( f N − f S)i−1/2, j = −kh

2
(abϕ)xy+O(h3). (164)

Together, (144), (153), and (164) yield (142). Equation (143) is proved analogously.¥

4. THE MOT-ICE FOR SYSTEMS OF CONSERVATION LAWS

In this section, we combine the results of Sections 2 and 3 and derive theMoT-ICE for
systems of conservation laws in two spatial dimensions.

Note that both in Eqs; (126), (127) of Theorem 2.1 and in Eq. (38) of Theorem 3.2 the
velocity fielda = (a, b) is evaluated at the half-timesteptn+1/2. In both situations this was
done to assure second-order accuracy in time. This simple observation makes it possible
to apply the scalar version of theMoT-ICE-P1in Theorem 3.2 to the advection equations
(38) in Theorem 2.1. To implement it, we need predicted values at the interfaces at the
half-timesteptn+1/2. These are the valuesU ∗ in Algorithms 4.1 and 4.2.

Below we give detailed algorithmic descriptions of the resulting first- and second-order
algorithms. We state and prove consistency for smooth solutions and introduce upwind
techniques which stabilize discontinuous solutions. Using Eq. (87), it is straightforward to
generalize these algorithms to the three-dimensional case.

Let x = (x, y) andF = (F,G) and consider again the system of conservation laws (1),
which now reads

∂tU+ ∂xF(U)+ ∂yG(U) = 0. (165)

We suppose that a wave model (6), (7) has already been chosen, and we setal = (al , bl ).

Step 0. First define the initial data via

Ū0
i j := 1

|Ki j |
∫
Ki j

U(x, y, 0) dx dy. (166)

Then make a conservative (i.e., small) guess of the admissible timestepk−1, for example

k−1 := h · CFL

maxi j l
(∣∣al
(
Ū0

i j

)∣∣, ∣∣bl
(
Ū0

i j

)∣∣ , (167)

where CFL is the Courant number. Now suppose thatkn−1 andŪn
i j , i, j ∈ Z, have already

been computed. We want to computekn andŪn+1
i j , i, j ∈ Z.

We begin with theMoT-ICE-P0.

ALGORITHEM 4.1. Step 1: For i, j ∈ Z and l = 1, . . . , L compute the auxiliary trans-
port velocities on the interfaces via

âl
i+(1/2) j := al

(
U∗i+(1/2) j

)
(168)

b̂i j+1/2 := bl
(
U∗i j+1/2

)
, (169)
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whereU∗i+(1/2) j andU∗i j+1/2 are given by a one-dimensional Lax–Friedrichs step:

U∗i+(1/2) j := 1

2
(Ui j + Ui+1 j )− λn−1

2
(F(Ui+1 j )− F(Ui j )) (170)

U∗i j+1/2 := 1

2
(Ui j + Ui j+1)− λn−1

2
(G(Ui j+1)−G(Ui j )). (171)

Step 2: Compute the new timestep by

kn := h · CFL

maxi j l
(∣∣âl

i+(1/2) j

∣∣, ∣∣b̂l
i j+1/2

∣∣) (172)

Where0< CFL≤ 1 is the Courant number.
Step 3: Compute the initial data and the update for each wave l= 1, . . . , L as follows:

For i, j ∈ Z let

Zl ,n
i j := Sl

(
Ūn

i j

)
(173)

and set

ϕ̄i j := Zl ,n
i j . (174)

Use(96) with timestep k= kn, âi+(1/2) j = âi+(1/2) j , andb̂i+(1/2) j = b̂l
i j+1/2 to compute

Zl ,n+1
i j :=

∑
i ′, j ′

ϕ̄
i j
i ′ j ′ . (175)

Step 4: For i, j ∈ Z, compute the update of the conservative variables

Ūn+1
i j :=

L∑
l=1

Zl ,n+1
i j . (176)

This completes the definition of theMoT-ICE-P0.
Let us now state the consistency of theMoT-ICE-P0for smooth solutions. We omit the

proof, since it is analogous to that of Theorem 4.2 below.

THEOREM 4.1 The MoT-ICE-P0 as defined in Algorithm4.1 is consistent of order one
with the conservation law(165) for smooth solutions.

Remark. To guarantee first-order consistency, it would have been sufficient to define

âl
i+(1/2) j := al

(
1

2
(Ui j + Ui+1 j )

)
b̂l

i j+1/2 := bl

(
1

2
(Ui j + Ui j+1)

)
.

However, this central differencing leads to oscillations when one computes discontinuous
solutions. The Lax–Friedrichs predictor step (170), (171) stabilizes the solution. See Fig. 9.
We stress that there is some freedom in the algorithm at this stage. For example, one might
construct the predicted values on the cell interfaces by a Roe decomposition or other upwind
technique.
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FIG. 9. Density plots for shallow-water Riemann problem (80 points).MoT-ICE-P0 without and with
LF-predictor-step.

For theMoT-ICE-P1we need the following modifications:

ALGORITHM 4.2. Step 1a: For i, j ∈ Z and l = 1, . . . , L compute preliminary transport
velocities on the interfaces via

al ,∗
i+(1/2) j := al

(
U∗i+(1/2) j

)
(177)

bl ,∗
i+(1/2) j := bl

(
U∗i+(1/2) j

)
(178)

al ,∗
i j+1/2 := al

(
U∗i j+1/2

)
(179)

bl ,∗
i j+1/2 := bl

(
U∗i j+1/2

)
. (180)

This timeU∗i+(1/2) j ,U
∗
i j+1/2 are given by the two-dimensional Lax–Friedrichs step

U∗i+(1/2) j := 1

2
(Ui j + Ui+1 j )− λn−1

2
(F(Ui+1 j )− F(Ui j ))

− λn−1

8
(G(Ui+1 j+1)+G(Ui j+1)−G(Ui+1 j−1)−G(Ui j−1)) (181)

U∗i j+1/2 := 1

2
(Ui j + Ui j+1)− λn−1

2
(G(Ui j+1)−G(Ui j ))

− λn−1

8
(F(Ui+1 j+1)+ F(Ui+1 j )− F(Ui−1 j+1)− F(Ui−1 j )). (182)

Step 1b: For i, j ∈ Z compute numerical derivatives(Ux)
n
i j and(Uy)

n
i j using the central

WENO reconstruction(131), (132).
Step 1c: For i, j ∈ Z compute numerical derivatives of the transport velocities on the

interfaces:

(ax)
l
i+(1/2) j := 1+ λn−1al ,∗

i+(1/2) j

2
a′(Ūi j )(Ux)i j +

1− λn−1al ,∗
i+(1/2) j

2
a′(Ūi+1 j )(Ux)i+1 j

(183)

(ay)
l
i+(1/2) j := 1+ λn−1al ,∗

i+(1/2) j

2
a′(Ūi j )(Uy)i j +

1− λn−1al ,∗
i+(1/2) j

2
a′(Ūi+1 j )(Uy)i+1 j

(184)
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(bx)
l
i j+1/2 := 1+ λn−1bl ,∗

i j+1/2

2
b′(Ūi j )(Ux)i j +

1− λn−1bl ,∗
i j+1/2

2
b′(Ūi j+1)(Ux)i j+1

(185)

(bx)
l
i j+1/2 := 1+ λn−1bl ,∗

i j+1/2

2
b′(Ūi j )(Uy)i j +

1− λn−1bl ,∗
i j+1/2

2
b′(Ūi j+1)(Uy)i j+1.

(186)

Here a′(U), b′(U) are the gradients of a, b with respect toU.
Step 1d: For i, j ∈ Z compute the auxiliary transport velocities:

âl
i+(1/2) j := (al ,∗

i+(1/2) j

)(
1− kn−1

2
(ax)

l
i+(1/2) j

)
+ kn−1

2

(
bl ,∗

i+(1/2) j

)
(ay)i+(1/2) j (187)

b̂l
i j+1/2 := (bl ,∗

i j+1/2

)(
1− kn−1

2
(bx)

l
i j+1/2

)
+ kn−1

2

(
al ,∗

i j+1/2

)
(bx)

l
i j+1/2. (188)

Step 2: Compute the new timestep kn by (172).
Step 3: Compute the initial data and the update for each wave l= 1, . . . , L as follows:

For i, j ∈ Z let

Zl ,n
i j := Sl

(
Ūn

i j

)+ kn

2
Tl
(
Ūn

i j , (Ux)
n
i j , (Uy)

n
i j

)
(189)

and set

ϕ̄i j := Zl ,n
i j (190)

(ϕ̄x)i j := S′l
(
Ūn

i j

)
(Ux)

n
i j (191)

(ϕ̄y)i j := S′l
(
Ūn

i j

)
(Uy)

n
i j . (192)

Then use(128) and(97)with timestep k= kn, âi+(1/2) j = âl
i+(1/2) j , andb̂i+(1/2) j = b̂l

i j+1/2

to compute

Zl ,n+1
i j :=

∑
i ′, j ′

ϕ̄
i j
i ′ j ′ . (193)

Step 4: For i, j ∈ Z compute the update of the conservative variables by(176).

Remark. (i) In practice, we usually replaced the two-dimensional predictor–steps (181),
(182) by the simpler one-dimensional steps (170), (171). This did not have any visible effect
on the computed solution.

(ii) The numerical derivatives of the transport velocities on the interfaces defined in
(183)–(186) are upwind-weighted averages of the derivatives to the left and right. Without
this careful upwinding, the numerical solution may develop instabilities at discontinuities
similar to those in Fig. 9.

(iii) In most of our experiments, the scheme was stable for CFI numbers up to unity.
There was one exception, namely a radially symmetric implosion for the shallow-water
equations. At the moment where the radially symmetric shock focuses at the origin and the
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water height develops a sharp peak, one has to reduce the CFL number to 0.5 to maintain
stability.

In other cases it seems to be possible to extend the scheme to CFL numbers greater than
unity by propagating waves across several cells as in [12, 19].

We end this section by proving the consistency of theMoT-ICE-P1.

THEOREM 4.2. The Mot-ICE-P1 as defined in Algorithm4.2 is consistent of order two
with the conservation law(165) for smooth solutions.

Proof. Let us briefly sketch the ingredients of the proof. In Theorem 2.1, we have decom-
posed the system of conservation laws into the advection equations (38) for the components
Zl with initial dataZl (tn) given by (39). In (189) of Algorithm 4.2, the initial data forZl (tn)
are approximated to second-order accuracy. The numerical approximation (190)–(193) of
Zl (tn+1) implements the scalar version of theMoT-ICE-P1defined in Theorem 3.2. The
hypothesis (126), (127) of that theorem can be verified from (177)–(188) by direct compu-
tation. It is here that the flexibility which is allowed by the discretely Lipschitz-continuous
higher order terms̃a and b̃ is really needed. We have already remarked that our central
WENO reconstruction satisfies (129), (130). Thus we can apply Theorem 3.2 and conclude
thatZl (tn+1) is approximated to second-order accuracy. This concludes the proof.¥

5. NUMERICAL EXPERIMENTS

In this section we present numerical experiments which confirm the accuracy and stability
of the newMoT-ICE for smooth and discontinuous solutions. In Section 5.1–5.3 we treat
one- and two-dimensional scalar problems with variable coefficients. In Sections 5.4 and 5.5
we compute solutions to the shallow-water equations. We include a preliminary comparison
of cpu times in Section 5.6.

5.1. Scalar Advection with Periodic Coefficients

To illustrate the failure of consistency of theMoT-CCE-P0(cell-centered evolution)
and the consistency of the newMoT-ICE (interface-centered evolution), we consider the
one-dimensional scalar advection equation

∂tϕ + ∂x(ϕ a) = 0

over the interval [−1, 1] with

a(x, t) ≡ −sin(πx)

and

ϕ0(x) ≡ 1.

Note that atx = 0, ϕ(0, t) statistics the ordinary differential equation

∂tϕ(0, t) = πϕ(0, t),
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and so

ϕ(0, t) = eπ t .

Similarly,

ϕ(1, t) = e−π t

and these are the maximum and minimum of the exact solution. We compute the solution
at timeT = log(2)/π ; so

0.5≤ ϕ(x, T) ≤ 2.

We choose a CFL number of 4 log(2)/π , roughly 0.88. In Table I, we list the experimental
orders of convergence (EOCs) with respect to both theL1 andL∞ norms.

In the L1 norm, the EOC of theMoT-CCE-P0starts at 0.77 and increases toward 1.
However, the methoddivergesin L∞, as should have been expected from Examples 3.1
and 3.2. In contrast to that, theMoT-ICE converges uniformly (i.e., inL1 and L∞) to
the expected orders. Comparing theL1 errors of theMoT-CCE-P0and theMoT-ICE-P0
(piecewise-constant reconstructions), one sees that theMoT-ICE converges with a better
rate (especially on the coarser grids) and produces roughly half the error of theMoT-CCE.
The convergence rates of theMoT-ICE-P1(piecewise-linear reconstructions) are even better
than 2 on the finer grids, both for the unlimited and the limited version (we omit the table
for the unlimited scheme). The error of the scheme using the WENO limiter is only slightly
larger than that of the unlimited scheme and it is of course orders of magnitude smaller than
that of the first-orderMoT-ICE-P0.

TABLE I

EOCs for One-Dimensional Advection with Periodic Coefficients

ix L1 EOC L∞ EOC

MoT-CCE-P0
40 5.456309e-02 — 3.439066e-01 —
80 3.210264e-02 0.77 4.215299e-01 −0.29

160 1.731594e-02 0.89 4.617376e-01 −0.13
320 8.996724e-03 0.94 4.813319e-01 −0.06
640 4.587514e-03 0.97 4.908176e-01 −0.03

MoT-ICE-P0
40 3.075886e-02 — 8.834546e-02 —
80 1.599486e-02 0.94 4.741382e-02 0.90

160 8.114853e-03 0.98 2.471667e-02 0.94
320 4.094363e-03 0.99 1.263470e-02 0.97
640 2.055908e-03 0.99 6.379015e-03 0.99

MoT-ICE-P1 with WENO limiter
40 2.193228e-03 — 5.123679e-03 —
80 5.330401e-04 2.04 1.532804e-03 1.74

160 1.281400e-04 2.06 3.878244e-04 1.98
320 2.993688e-05 2.10 7.604266e-05 2.35
640 5.934229e-06 2.33 1.523297e-05 2.32
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5.2. Rotating Smooth Hump

Our next test problem is the two-dimensional scalar equation (41) with

a(x, y, t) := −y

b(x, y, t) := x

in the domain [−1, 1]2. Note that for this problem, theMoT-CCE-P0and theMoT-ICE-P0
will produce identical results, sinceax ≡ by ≡ 0, and so

âi+(1/2) j = ai+(1/2) j = ai j = −yj for all j

and

b̂i j+1/2 = bi j+1/2 = bi j = xi for all i .

We compute one full rotation, i.e.,T = π , and fixλ = 1t/1x = π/6. Assuming that the
maximal transport velocity is

√
2, this corresponds to a CFL number of roughly 0.74.

First, we consider smooth initial data. Letx0 := 0.5, y0 := 0, r0 := 0.3,

r (x, y) := ((x − x0)
2+ (y− y0)

2)1/2,

and

ϕ0(x, y) :=
{

1
4(1+ cos(πr (x, y)/r0))

2, if r < r0,

0, otherwise.

For theMoT-ICE-P0 the EOCs increase slowly toward unity both inL1 and L∞ (see
Table II). The error is very large on the coarser grids, and the convergence is initially slow.

TABLE II

EOCs for a Smooth Rotating Hump

ix L1 EOC L∞ EOC Height

MoT-ICE-P0
40 9.528519e-01 — 7.129756e-01 — 0.287
80 6.479957e-01 0.56 5.459218e-01 0.39 0.454

160 3.994583e-01 0.70 3.690224e-01 0.56 0.631
320 2.277596e-01 0.81 2.228099e-01 0.73 0.777
640 1.228174e-01 0.89 1.239005e-01 0.85 0.876

MoT-ICE-P1 with unlimited central differences
40 2.596250e-01 — 2.056520e-01 — 0.794
80 5.505040e-02 2.24 4.491245e-02 2.20 0.961

160 1.091899e-02 2.33 8.892373e-03 2.34 0.995
320 2.426323e-03 2.17 1.967944e-03 2.18 0.999
640 5.822946e-04 2.06 4.673955e-04 2.07 1.000

MoT-ICE-P1 with WENO limiter
40 4.351708e-01 — 4.749751e-01 — 0.525
80 1.201747e-01 1.86 2.327933e-01 1.03 0.767

160 3.337591e-02 1.85 1.018161e-01 1.19 0.898
320 6.350393e-03 2.39 4.022132e-02 1.34 0.960
640 1.030164e-03 2.62 1.230235e-02 1.71 0.988
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TABLE III

EOCs for a Rotating Cylinder

MoT-ICE-P0 MoT-ICE-P1, WENO limiter

ix L1 EOC Height L1 EOC Height

40 7.012658e-01 — 0.868 3.758964e-01 — 0.993
80 5.046964e-01 0.47 0.968 2.278516e-01 0.72 1.000

160 3.618134e-01 0.48 0.990 1.398394e-01 0.70 1.000
320 2.583896e-01 0.49 0.995 8.588859e-02 0.70 1.000
640 1.837913e-01 0.49 0.997 5.270885e-02 0.70 1.000

This is natural, since the initial data are not well resolved on the coarse grids, where they
appear as a sharp peak rather than a smooth hump.

For theMoT-ICE-P1with unlimited central differences the EOCs are better than 2 both
in L1 and L∞ and they converge toward 2 as the grids are refined. For theMoT-ICE-P1
with the WENO limiter, the EOCs inL1 are slightly below 2 in the beginning. However, as
the grid is refined, the EOCs increase drastically and well beyond 2. InL∞, the EOCs start
slightly above unity on the underresolved coarse grids, but they show a similar dramatic
increase as the grids are refined. In our experience, this behavior is typical for the central
WENO limiter.

5.3. Rotating Cylinder

Next, we consider the rotating cylinder:

ϕ0(x, y) :=
{

1 if r < r0,

0 otherwise.

Since the solution is discontinuous, we only give the experimental orders of convergence
in L1 (see Table III). We also display the maximal height of the cylinder, to see if it is
excessively smeared or whether there are overshoots in the numerical solution.

For theMoT-ICE-P0, the EOCs tend toward 0.5 as expected for a linear problem and a
scheme based on piecewise-constant reconstructions. The maximal height of the cylinder
increases toward 1.0 as the grid is refined. For the unlimitedMoT-ICE-P1(we omit the table),
the EOCs are decreasing from 0.78 toward 0.70. As should be expected for a discontinuous
solution computed with unlimited piecewise-linear reconstructions, there is an overshoot of
9 to 11% of the height of the cylinder. TheMoT-ICE-P1with the WENO limiter converges
at rate 0.70, produces no overshoots, and yields only slightly largerL1 errors than the
unlimited scheme. As can be seen from the maximal height especially on the coarser grids,
the computation is much less smeared than the one with theMoT-ICE-P0. The error on
the finest grid is a factor 3.5 smaller for the limitedMoT-ICE-P1than for theMoT-ICE-
P0. Figure 10 shows that the cylindrical shape of the solution is nicely preserved by both
versions of the scheme.

5.4. Shallow-Water Equations: 1-D Riemann Problem

In the following two examples, we compute solutions to the shallow-water equations,
i.e., Eq. (15) withγ = 2 andκ = 0.5. We use the wave model (20)–(22). First we consider
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FIG. 10. Rotating cylinder.MoT-ICE-P0andMoT-ICE-P1(160× 160 points).

the one-dimensional Riemann problem with initial data

(ρ, u, v) =
{
(1, 0, 0) for x < 0,

(0.1, 0, 0) for x > 0.

We compute the solution at timeT = 0.8, using a CFI number of 0.8. Note that in this
situation, theMoT-CCE-P0coincides with the Steger–Warming splitting. As already re-
ported by Steger and Warming in 1981, this scheme produces kinks, or glitches, at sonic
points, where the magnitude of the velocity agrees with the sound velocity,|u| = √ρ. This
can be seen in Fig. 11. The kink near the right corner of the rarefaction wave persists un-
der grid refinement. The numerical solution becomes discontinuous in a region where the
exact solution is smooth. TheMoT-ICE, both with piecewise-constant (P0) and piecewise-
linear (P1) reconstruction produces nonoscillatory results with the expected resolution (see
Figs. 12 and 13).

5.5. Shallow-Water Equations: 2-D Explosion

In her dissertation [26], Morel computes a radially symmetric explosion for the shallow-
water equations with data

(ρ, u, v)(x, y, 0) =
{
(1, 0, 0) for (x2+ y2)1/2 < 0.3

(0.1, 0, 0) for (x2+ y2)1/2 > 0.3.

Here we compute this solution over the square [−1, 1]2 with CFL= 0.8. Figure 14 shows
contour plots of theMoT-CCE-P0, theMoT-ICE-P0, and theMoT-ICE-P1at timeT = 0.6.
It is well known that solutions to radially symmetric problems computed with a first-
order Roe or Godunov scheme on a Cartesian grid may become square or diamond shaped
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FIG. 11. Shallow-water Riemann problem.MoT-CCE-P0with 80 and 320 points. Solid line is theMoT-ICE-
P1with 800 points. Note the kink of theMoT-CCEat the sonic point near the right corner of the rarefaction wave,
which persists under grid refinement.

FIG. 12. Same as Fig. 11, but forMoT-ICE-P0.There is no kink at the sonic point.
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FIG. 13. Same as Fig. 11, but forMoT-ICE-P1.There is no kink at the sonic point, and the solution is both
accurate and nonoscillatory.

(see for example [22]). The leading shock computed with theMoT-CCE-P0is radially
symmetric. There are, however, grid-orientation effects at the sonic points in the interior
of the solution. TheMoT-ICE, especially with piecewise-linear reconstruction, produces
perfectly radially symmetric results. Details can be seen in Figs. 15–17, where we plot
sections along thex-axis and the diagonal against the results of a resolved one-dimensional
calculation. The kinks produced by theMoT-CCE-P0are clearly visible, but they decrease in
magnitude as the grid is refined. Once more, theMoT-ICE-P0produces no such kinks. The
higher-order-accurateMoT-ICE-P1produces a better solution on a grid of 160× 160 points
than the first-orderMoT-ICE-P0on a 640× 640 grid. On the finest grid, theMoT-ICE-P1
fully resolves this challenging problem.

FIG. 14. Explosion prolem for the shallow-water equations usingMoT-CCE-P0, MoT-ICE-P0, andMoT-ICE-
P1 for a grid of 160× 160 points with 25 contours of water height.
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FIG. 15. Explosion problem for the shallow-water equations usingMoT-CCE-P0. Plots of water height for
grids of 160× 160, 320× 320, and 640× 640 points. Left column: cuts along thex-axis. Right column: cuts along
the diagonal. Solid line: one-dimensional solution with 3200 points. Note the kinks at the sonic points.

Note that on the fine grid there are two points in the shock region for theMoT-ICE-P1,
three points for theMoT-ICE-P0, and four points for theMoT-CCE-P0. From these pictures,
the results of theMoT-ICE-P1seem to be of the same quality as those computed by Morel
[26] using CLAWPACK.

5.6. Comparison of Efficiencies

Let us give a first comparison of efficiencies. Morel [26] reports that theMoT-CCE-P0,
Van Leer’s flux-vector splitting, and CLAWPACKT1,0 (using the first-order Roe solver
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FIG. 16. Same as Fig. 15, but forMoT-ICE-P0.Note that the kinks at the sonic points have disappeared.

without transverse wave propagation) all use the same amount of cpu time (say one time
unit). CLAWPACK T1,1 takes 1.5 units, and the first-order fix at sonic points proposed
by Morel takes 2.9 units. Our preliminary experience with theMoT-ICE is the following:
the MoT-ICE-P0, which is consistent at sonic points, takes 0.9 to 1.0 units and is hence
as fast as standard first-order schemes. TheMoT-ICE-P1 takes 2.0–2.2 units, which is
the same as the second-order CLAWPACKT2,2. This compares favorably with theMoT-
CCE-P1presented in [9], which is consistent at sonic points, but needs 10.5 units of cpu
time.
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FIG. 17. Same as Fig. 15, but forMoT-ICE-P1.There are no kinks, and the resolution is drastically improved.

To fix units, the two-dimensional shallow water explosion described in Section 5.5 above
computed with theMoT-CCE-P0on a grid of 160× 160 points, with Courant number
CFL= 0.8 (74 timesteps), took 17.8 seconds of cpu time on a personal computer with
500 MHz Pentium III processor.

6. CONCLUSION

Fey’smultidimensionalMethod of Transport is an interesting alternative to schemes based
on one-dimensionalsolution operators. Motivated by an inconsistency of the first-order
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version of the method at sonic points, which also occurs for other upwind finite-difference
schemes, we have developed a uniformly consistent variant of Fey’s scheme. Our new
scheme is still based on Fey’s multidimensional wave models, and on a decomposition of the
multidimensional system into scalar advection equations that is similar to his. The key new
idea is a different approximation of the characteristic flow at the level of multidimensional
scalar advection equations. Fey’s method uses a local approximation of the characteristic
flow to propagatecellsforward in time, while our approach tracks theinterfacesbetween the
cells backward in time. To distinguish between the two approaches, we call Fey’s scheme
MoT-CCEfor cell-centered evolution and our new schemeMoT-ICEfor interface-centered
evolution.

For theMoT-ICE, we have proven uniform first- and second-order consistency. Ini-
tial numerical experiments confirm second-order accuracy for smooth solutions and high-
resolution nonoscillatory shock-capturing properties for discontinuous solutions. The new
scheme produces excellent radially symmetric solutions for a two-dimensional shallow-
water explosion problem.

The main advantage of theMoT-ICE-P1seems to be its efficiency: it needs about the same
cpu time as a second-order version of LeVeque’s wave-propagation algorithm CLAWPACK,
which, according to numbers given by Morel, is 4 to 5 times faster than the second-order-
accurateMoT-CCE-P1developed by Fey, Jeltsch, and co-workers. This gain of efficiency
is partly due to an improved second-order-accurate linerization and decomposition of the
nonlinear system into advection equations and to the particularly simple characteristic
transport algorithm for the resulting linear advection equations. This simplicity is retained
in the case of three spatial dimensions.

In ongoing joint work with Christian von T¨orne, we are currently developing theMoT-ICE
into a fully adaptive, distributed parallel code.
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